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1. Introduction

“The conjugate gradient method (CG) is an algorithm for the numerical solutions
of particular systems of linear equations, namely those whose matrix is symmetric
and positive definite. The conjugate gradient method is often implemented as an
iterative algorithm, applicable to sparse systems that are too large to be handled by
a direct implementation or other direct methods such as the Cholesky decomposi-
tion. Large sparse systems often arise when numerically solving partial differential
equations or optimization problems.” [Wik14a]

“The finite element method (FEM) is a numerical technique for finding approximate
solutions to boundary value problems for partial differential equations. It uses
subdivision of a whole problem domain into simpler parts, called finite elements,
and variational methods from the calculus of variations to solve the problem by
minimizing an associated error function. Analogous to the idea that connecting
many tiny straight lines can approximate a larger circle, FEM encompasses methods
for connecting many simple element equations over many small subdomains, named
finite elements, to approximate a more complex equation over a larger domain.”
[Wik14b]

In this report, we will be concerned with solving Ax = b for sspd (sparse symmetric positive-
definite) A, with known A and b. We will use the Conjugate Gradient method as iterative solver.
More specifically, we will be interested in parallelizing this method. In §2–§5, we will give our solu-
tion to Exercise 4.6 from [Bis04] by specifying a general-purpose parallel sparse CG implementation.
We will test our implementation using random generated matrices.

In §6 we will narrow our class of sspd matrices to matrices found in the (continuous piecewise
linear) Finite Element Method. These matrices have additional (geometrical) structure as they arise
from solving a partial differential equation. We will use this knowledge to create another parallel
CG implementation specifically for FEM-matrices. These matrices occur reguarly in engineering
and thus even have a practical use.

In §7 we will test both our methods on a set of FEM-matrices. What method performs better?
When does the CG method benefit from parallelizing, and how large does our system need to be?

We will provide thoughts for future work in §10. All our code is open-source and available at
http://github.com/rvanvenetie/bspcg/releases/tag/v1.0.

http://github.com/rvanvenetie/bspcg/releases/tag/v1.0
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2. Sequential CG

In its most basic (sequential, non-preconditioned) form, CG can be written down as in Algo-
rithm 1. [Bis04, Alg. 4.8]

Algorithm 1: Sequential CG

Input : kmax ∈ N, ε ∈ R, n ∈ N, A spd n× n, b ∈ Rn

Output: x ∈ Rn with Ax ≈ b
k := 0;

u[n] = ~0, w[n];

ρold, β;

r := b;

ρ := 〈r, r〉;
nbsq := ρ;

while ρ > ε2 · nbsq ∧ k < kmax do
if k > 0 then

β = ρ/ρold;

u← βu;

u← r + u;

w ← Au;

γ := 〈u,w〉;
α := ρ/γ;

x← x+ αu;

r ← r − αw;

ρold = ρ;

ρ = 〈r, r〉;
k = k + 1;

end

2.1. Sequential sparse CG. As most real-life matrices are sparse in nature, we will adapt Algo-
rithm 1 to a version that supports sparse matrices. We will assume the right-hand side to be dense.
This allows us to effectively only change the function responsible for matrix-vector multiplication.

Our storage format uses the so-called coordinate scheme; we store tuples (i, j, aij) with i the
row number, j the column number and aij the matrix value at this position. The Matrix Market
file format adds some headers, e.g. to denounce symmetry so that one only has to store the lower
triangular part. We denote by nz(A) the amount of nonzero elements in this lower triangular part.
If we store the list of tuples in three lists of length nz(A), namely I, J and v, we can compute a
sequential sparse matrix-vector multiplication using e.g. [Bis04, Alg. 4.3].

3. Parallelizing CG

With our sequential algorithm in hand, we are now ready to parallelize the Conjugate Gradient
method using bspmv and bspip. Given the spd matrix A ∈ Rn×n and vector b ∈ Rn, this requires
us to find distributions for A, b and all other vectors present in the algorithm. If we want to
minimize communication cost, we desire that the distributions of n, x, r, u, w are the same.1 This

1This was also pointed out in [Bis04, p. 174].
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allows us to perform all vector updates locally and makes for easy implementation of the inner
product algorithm.

Every iteration of Algorithm 1 has 5 vector updates, two inner products and one matrix-vector
multiplication. Finding the best distribution of A, x and b is an NP-hard problem so we will have to
resort to heuristic methods. To find these edistributions, we can use Mondriaan.2 With its option
-SquareMatrix DistributeVectorsEqual=yes we can force input and output vector to have the
same distribution. We chose not to alter the default load imbalance option of ε = 0.03.3

The resulting parallel algorithm is in appearance almost exactly as Algorithm 1, so we will not
rewrite this. The vector updates can be done locally without communication. The big changes are
made in computation of the inner product and the matrix-vector product. The bspmv algorithm
found in [Bis04, Alg. 4.5] was used without alterations, but the bspip algorithm [Bis04, Alg. 1.1]
was found unusable as this assumed a cyclical distribution. See Algorithm 2 for a parallel inner
product algorithm that assumes that both vectors have the same distribution. The beauty of
this algorithm is that no processor has to know the distribution, as long as it has its own vector
components stored as a smaller vector.

Algorithm 2: Parallel inner product 〈v, y〉 assuming v and y have equal distributions

Input : p total number of processors, 0 ≤ s < p current processor number, nvs the amount
of vector elements locally stored, vs, ys ∈ Rnvs local vectors

Output: α = 〈v, y〉
αs := 0;

α := 0;

/* Compute local inner product */

for i = 0 to nvs do
α = α+ vs[i] · ys[i]

end

/* Put local inner prodcut */

for q = 0 to p do
Put αs to P (q);

end

/* Find global inner product */

for q = 0 to p do
α = α+ αq;

end

2Mondriaan is a sequential program written in C that can be used to partition a rectangular sparse matrix, an input
vector, and an output vector for parallel sparse matrix-vector multiplication. The program is based on a recursive
bipartitioning algorithm that cuts the matrix horizontally and vertically, in a manner resembling some of the famous
Mondriaan paintings. The algorithm is multilevel, hypergraph-based, and two-dimensional. It reduces the amount
of communication and it spreads both computation and communication evenly over the processors. The program
can partition hypergraphs with integer vertex weights and uniform hyperedge costs, but it is primarily intended as a
matrix partitioner. [Bis13]

3Later inspection using the formula provided in [Bis04, p. 189] – ε = V g/(2nz(A)) being optimal for the matrix-
vector product – revealed that the optimal value (which of course depends on p and A) lies around 0.2. The total
iteration time was however not that much faster, so we opted not to rerun everything.
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Figure 1. Results of running bsbench on a thin node of Cartesius with n = 100,
h = 256. x-axis: p ∈ {1, . . . , 64}. y-axis: left – g, right – l.

3.1. BSP cost. We first calculate the BSP cost of the parallel algorithm per iteration, using
Algorithm 1 as reference. Let nvs be the amount of vector elements locally stored on processor s.
The rescale costs nvs operations and axpys cost 2nvs each. This makes vector updates contribute
7nvs to the total amount of operations.

Looking at Algorithm 2, each inner product yields 2nvs − 1 operations for Superstep 1, pg
operations for Superstep 2 and p−1 operations for Superstep 3, with 2 synchronizations in between
for a total of 2(2nvs − 1 + p− 1 + pg + 2l) inner product operations per iteration.

We found in [Bis04, p. 189] that the matrix-vector product using a Mondriaan distribution yields
a total BSP cost of 2(1+ε)nz(A)/p+V g/p+4l operations. We have one such matrix-vector product
per iteration.

Summing everything together, we get a total BSP cost per iteration of

11nvs − 4 + p(2 + 2g) + (V g + 2(1 + ε)nz(A))/p+ 8l.

We were unable to further specify this without getting into very nasty details.

4. Cartesius hardware

We ran bspbench with the default n = 100, h = 256 and p ∈ {1, . . . , 64} to get an idea of values
for r, g and l for processor counts and get an idea of the scaling properties of Cartesius.

We found the average value of r̄ = 9157 Mflop/s. See Figure 1 for values of g and l as function
of p. We see a sharp increase in both g and l at p = 24. These have to do with the hardware of
Cartesius: under 24 cores is done on a shared-memory system, where communication is cheap.

5. Testing our parallel CG

To test our implementation, we want to have access to matrices. One way to do this is described in
[Bis04, Ex. 4.6]: create a random sparse matrix B with values in [−1, 1], then take A← B+B>+µI
with µ such that A is strictly diagonally dominant. As the idea of this is merely to generate a matrix
A that is spd, we opted for a slightly easier approach.

We need to compute a symmetric matrix, so we only have to look at the lower triangular part
of this matrix. First we create a random sparse strictly lower triangular matrix B. We do this by
specifying some density δ and placing a random number in [−1, 1] on position (i, j) with probability
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δ. The matrix must be positive definite, which is achieved ([TB97, Ex. 24.2]) if

|Aii| >
n∑

j=1,j 6=i

|Aij | =
i−1∑
j=1

(|Bij |+ |Bji|).

Let µ be the maximum of the row sums. We now know that B+B>+µI is an spd matrix. Finally,
to add some more randomness to the diagonal, we replace the diagonal element µ by a random
number in [µ, µ+ 2] with probability δ.

This method, and its counterpart given in [Bis04, Ex. 4.6], has one glaring drawback. Matrices
of this type are diagonally dominant, implying that the diagonal elements are much larger than
the offdiagonals! The resulting matrix is close to diagonal. As solving Ax = b for diagonal A using
CG completes in one step, it will be no surprise that every test with matrices like these will result
in very few iterations.

We created a lot of systems,4 and for each system computed:

P, n, nz(A), δ = nz(A)/n2, k(number of iterations),

ti (time to initialize), tmv (time matrix-vector), tip (time inner product),

tl (time local operations), tg (time spent computing global solution),

titer = tmv + tip + tl (time spent iterating), t = ti + tmv + tip + tl + tg (total time).

We did a lot of testing and came to the conclusion that k ∼ 10 – being the order of amount of
iterations needed for CG to converge – is too low to get any significant result, as communication
time is just too much of a contribution.

We varied the right-hand side by either (1) setting b := ~1 (simple right-hand side), (2) b := A~1
(known solution), (3) bi ∈ [0, 1] (random right-hand side) and (4) the ability to load b from file. The
last method proved very useful later on, when comparing this algorithm with our special-purpose
FEM-CG. One conclusion of some significance is that the iteration count (and the total time) is
more or less invariant under the choice of right-hand side.

5.1. Example. Taking n = 4096 and δ ∈ {0.1, 0.2}, we get two sample matrices. Looking at tmv

and tip for these matrices yields Figure 2. We see that the computation time (titer = tl + tmv + tip ≈
tmv + tip for small systems with little computations) decreases first, then increases later. This has
to do with the Cartesius hardware: see §4.

If we look at tip separately, one sees that tip takes the overhand, especially in the non-shared
memory case. The systems are simply too small for parallelization to be of use; the time spent
computing the local inner product is heavily outweighed by the communication costs. This raises
the question if tip would improve had we used the inner product communication strategy from
[Bis04, Exercise 1.1]. In this exercise, we found that if

(p− 5 log2 p) + (p+ log2 p− 1)g + (2− log2 p)l > 0

the new strategy is better. A quick inspection yields that this is true for p ≤ 4 and very false
(values being in the order of negative millions) for p > 4, so we didn’t even try.

4We varied n between 26 and 212, δ := nz(A)/n2 between 0.01 and 0.2 with 6 values and p between 20 and 26 for
a total of about 300 matrices.
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Figure 2. Timing results for two sample matrices. Purple: tip; green: tmv.

6. FEM and CG

We are now trying to solve a FEM system using CG. More specifically, we want to find a
(numerical) solution to the two-dimensional PDE

(1)

{
−∆u = f in Ω

u = 0 on ∂Ω

with Ω a polygonal domain. In this report, we will look at f = 1, further narrowing the problem.
The idea of the Finite Element Method is to find the projection of u ∈ C2

0 (Ω) – twice continu-
ously differentiable functions that are zero on the boundary of Ω – onto some (finite dimensional)
linear subspace V . We will take V to be the space of piecewise linear functions, subject to some
partitioning of Ω into elements. Often, these elements will be triangular (and hence, we will use
triangles and elements interchangeably from here on after). Choosing Ω to be polygonal allows

us to triangulate Ω into triangles T = {T0, . . . TN−1} such that Ω = ∪N−1
k=0 Tk. We will denote the

vertices of these triangles with X = {x0, . . . , xn−1} and order them such that x0, . . . , xD−1 lie in Ω
with xD, . . . , xn−1 on ∂Ω.

This triangulation cannot be arbitrary, as this introduces hanging nodes and other nasty side-
effects. We assume triangulations to be conforming ; in this report, this means that “everything
works nicely”.

The fact that functions in V are zero on the boundary implies that dim(V ) = D. The number
D is also called the degrees of freedom for a given triangulation. A useful basis for this subspace V
is the nodal basis Φ = {φi : 0 ≤ i < D} of hat functions, uniquely determined by the property

φi(xj) = δij ∀ 0 ≤ i < D, 0 ≤ j < N.

An example of such a basis function is given in Figure 3. Note that every basis function φi directly
corresponds to a vertex that does not lie on the boundary. This allows us to identify vertices with
basis functions: every degree of freedom is coupled to a vertex inside the domain.

The crux of the Finite Element method is that we can actually find the projection uV of u onto
V without knowing the exact solution u! Write uV in the nodal basis:

uV =
D−1∑
i=0

αiφi.

Then, uV can be proven ([Ray14, p. 19]) to be the solution to the system

A~α = b with Aij := a(φi, φj) =

∫
Ω
∇φi · ∇φj and bi =

∫
Ω
φi.
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Figure 3. Example of a basis function for a pentagon

The matrix A is called the stiffness matrix, which is spd. [Ray14, p. 42] It is also a sparse matrix,
as the basis functions only ‘interact’ with a small number of neighbours.

In the coming sections, we will look at the two steps involved in solving such a FEM-system:

System assembly: is the act of finding the nonzeros of A and b;
Solving the system: as n (and thus D) is generally very large, we want to use an efficient

solver. We will be using CG.

6.1. System assembly. How can we find the elements of the stiffness matrix in an efficient man-
ner? In other words, how do we calculate a(φi, φj)? The following elegant derivation uses the fact
that the domain can be decomposed into triangles:

(2) a(φi, φj) =

∫
Ω
∇φi · ∇φj =

∫
T0∪···∪TN−1

∇φi · ∇φj =

N−1∑
n=0

∫
Tn

∇φi · ∇φj =:

N−1∑
n=0

aTn(φi, φj).

We will call the matrix AT with (AT )ij = aT (φi, φj) the element matrix of triangle T , which
contains information on interactions of basis functions restricted to T . This reduces the problem of
finding the stiffness matrix to finding the element matrices. Note that these matrices are very sparse:
in fact, they only have 3× 3 nonzeros as there are only 3 basis functions that have interactions per
triangle. Therefore, we will compute a 3 × 3 matrix ÂT and scale this up to the D × D element
matrix AT .

In fact, this 3× 3 matrix can be computed in a variety of ways. One way is to use

D =
[
v0 v1 v2

]
∈ R2×3

with vi the ith vertex of triangle T . Then one can prove ([Wik13]) that

ÂT =
D>D

4 · vol(T )

with vol(T ) the volume of triangle T .
We can compute the right-hand side bi in much the same way. One can prove ([Wes14, §2.3])

that

bi =

∫
Ω
φi =

N∑
n=0

∫
Tn

φi =

N∑
n=0

1Tn(xi)vol(Tn)/3.
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With these notes we can easily derive Algorithm 3 which constructs a FEM-system for a given
triangulation.

Algorithm 3: Calculate the FEM-matrix.

Input : X : list of vertices,
T : list of N triangles,
D : degrees of freedom.

Output: A : sparse D ×D FEM-matrix ,
b : vector of length D, the rhs of the system.

/* Initalize to zero */

b := 0;

A := 0;

for k : 0 ≤ k < N do

Generate element matrix ÂTk
;

/* Loop over indices in the element matrix */

for li : 0 ≤ li < 3 do
Calculate global index i corresponding to li;

/* Check if vertex li corresponds to a DOF */

if i < D then
bi = bi + vol(Tk)/3;

for lj : 0 ≤ lj < 3 do
Calculate global index j corresponding to lj;

if j < D then
Ai,j := Ai,j + (ATk

)li,lj ;

end

end

end

6.2. Solving the system. In the previous section we saw how to assemble the FEM system. One
could use this approach to create a ‘naive’ parallel FEM solver: let one processor assemble the
system, find a parallel distribution (using e.g. Mondriaan) and apply the parallel CG algorithm
described in §3. This has a few disadvantages:

(I) Matrix assembly is computationally expensive;
(II) This system is possibly enormous, limiting us to systems that fit in memory of a single

processor;
(III) The relation between the geometrical object, triangulation and nonzeros is lost: aij is

nonzero iff φi and φj interact, which only happens if xi and xj are connected by an edge.

We will look at a smarter approach which solves these disadvantages. Instead of distributing the
matrix nonzeros Aij between processors, we distribute the triangles Tn over p processors, thereby
solving disadvantage (III). We divide our triangulation into p disjoint sets of length Nq

T =

p−1⊔
q=0

T q, T q = {T q
0 , . . . , T

q
Nq−1},

leading to the partition Ω = T 0∪· · ·∪T p−1. When distributing the triangles over the processors, we
implicitly distribute the vertices over the processors as well. A side-effect of this is that a vertex xi
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Figure 4. A sample mesh with its triangle distribution. Only vertices not on
the boundary have been numbered. For these vertices, Π(0) = {0, 1, 2, 3},Π(1) =
{0},Π(2) = {0, 1}.

can belong to multiple processors. Therefore we define its processor set

Π : {0, . . . , D − 1} → 2{0,...,p−1} : i 7→ Π(i)

as the set of processors that contain xi in one of their triangles. Remember that every non-boundary
vertex was identified with a degree of freedom. As vertices might be shared with different processors,
this induces a different kind of vector distrbution than the one described in [Bis04, Ch. 4]: all the
processors in a set must have a copy of the corresponding vector value. Figure 4 is an illustration
of the definitions given in the previous section.

6.3. Matrix-vector calculation. To implement CG with our new distribution we need to calcu-
late the matrix-vector product u = Av. This is where we profit from using the geometrical relation
between the triangle distribution and the stiffness matrix A. Use of equation (2) leads to a natural
decomposition of A into

A =

p−1∑
q=0

Aq with Aq =

Nq−1∑
n=0

AT q
n

and (Aq)ij =

Nq−1∑
n=0

aTn(φi, φj).

The matrices Aq are D × D but again very sparse. We identify Aq with a smaller matrix Âq by
removing zero rows and columns. As the name suggests, the processor q constructs the matrix Aq

(actually Âq) locally. This is possible because Aq only depends on triangles that are distributed to
processor q.

To calculate the entire product u = Av, we will first calculate vq = Aqu (actually v̂q = Âqû).

We can find v by adding these local vectors: v =
∑p−1

q=0 v
q. Remember that vector element vi

corresponds to a vertex xi, which is shared by the processors in the set Π(i). We calculate the
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value vi by letting every processor in the set Π(i) send (vq)i to every other processor in Π(i). After
this communication step, every processor sums over these local values to find vi. This method
ensures that every processor sharing vertex xi gets the correct value of vi. In Algorithm 4 we give
the implementation of the parallel matrix-vector product u = Av for a FEM-matrix A.

Algorithm 4: Matrix-vector product for a FEM-system for P (s)

Input: As : sparse (local) FEM-matrix for P (s), such that A =
∑p−1

t=0 A
t,

Π : {0, . . . , D − 1} → 2p,
v : vector of length D, distr(v) = Π.

Output: u : Av, distr(u) = Π

(0) Local sparse symmetrical matrix-vector product us = Asv by ûs = Âsv̂;

(1) for i : 0 ≤ i < D ∧ s ∈ Π(i) do
for t ∈ Π(i) do

put (us)i in P (t);

end

end

(2) for i : 0 ≤ i < D ∧ s ∈ Π(i) do
ui := 0;

for t ∈ Π(i) do
ui := ui + (ut)i;

end

end

6.4. Creating Âq. To create Âq, we need to identify the zero rows (and by symmetry, columns)
of Aq. A row i is zero if (Aq)ij = 0 for 0 ≤ j < D; this corresponds to the situation where basis
function φi has no interactions on any of the triangles contained by processor q. Translating this
back to the triangulation, we see that this happens if processor q does not use vertex xi: q 6∈ Π(i).

This gives us an explicit formula for Dq, defined as the size of Âq: Dq = #{i : 0 ≤ i < D, q ∈ Π(i)}.
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Algorithm 5 now describes how to create Âq for each processor, given a distribution ψ of the
triangles. Here we assume that the initial distribution is entirely read by processor 0.

Algorithm 5: Algorithm that calculates the local FEM data.

Input : X : list of n vertices, with first D vertices corresponding to a DOF,
T : list of N triangles, distr(T ) = ψ.

Output: Π : processor set for each DOF,
Âs : local sparse FEM-matrix for P (s),
b : vector of length D, distr(b) = Π.

(0) if s = 0 then
Use φ to calculate Π, the processor set for each DOF;

Put the local amount of DOF, vertices and triangles in each processor;

end

(1) Allocate memory for the (local) FEM data;

(2) if s = 0 then
for i : 0 ≤ i < N do

put T (i) in P (ψ(i));

put vertices of T (i) in P (ψ(i)) /* Avoid duplicates in implementation */

end

end

(3) Calculate local FEM-matrix Âs and local right hand side b̂s;

(4) Communicate entries of b̂s to processor sets, see superstep (1) in Alg 4;

(5) Sum the values to find b, see superstep (2) in Alg 4;

6.5. Inner product. The CG Algorithm also requires the inner product between two vectors. We
calculate this inner product using a slightly altered version of Algorithm 2. In the new case, the
vector elements are duplicated on every processor in the corresponding processor set. Therefore,
for each vector element we must make a choice which processor from the processor set adds the
contributions of this element to the inner product. This is done by Πowner(i), which is just some
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processor in its processor set. We chose Πowner(i) := min Π(i). The parallel inner product algorithm
for these distributions is now given in Algorithm 6.

Algorithm 6: Inner product for vectors in FEM-system for P (s)

Input: x, y : vector of length D,
Πowner : {0, . . . , D − 1} → P ,
distr(x) = distr(y) = Πowner.

Output: a := 〈x, y〉
(0) as := 0;

for i : 0 ≤ i < D ∧Πowner(i) = s do
as := as + xiyi;

end

(1) for t : 0 ≤ t < p do
put as in P (t);

end

(2) a := 0;

for t : 0 ≤ t < p do
a := a+ at;

end

6.6. CG on FEM-system. In the previous sections, we have given a way to calculate the matrix-
vector and inner product for a FEM system, defined by a mesh and a triangle distribution, con-
trasting to an actual distribution of the stiffness matrix nonzeros, which we used in §3.

With both these operators the implementation of CG is similar to the sequential one described
in Algorithm 1; we just have to replace the inner product and matrix-vector product with the
algorithms described above.

6.7. Triangle distribution. The triangle distribution ψ determines the cost of the operations
described above. For a vertex xi, there are two possibilities:

(1) |Π(i)| = 1. This means that all interactions of the basis function φi are stored on a single
processor q, meaning that (Av)i = (Aqv)i or in other words, no communication is necessary.
This corresponds with x0 in Figure 4;

(2) |Π(i)| > 1. Interactions of φi are stored on different processors. To compute (Av)i, we
need to communicate with |Π(i)| − 1 processors. This corresponds with vertices x1, x2 in
Figure 4.

Here we see another advantage of our FEM-approach. By distributing triangles, we can balance
computation and communication cost of a matrix-vector multiplication. We chose to use Mondri-
aan, using [Bis, FBFAB13]. We transform a given triangulation into a hypergraph H = (V,E) – a
generalization of a graph in which any number of hypervertices can be connected by hyperedges or
nets. This is done as follows:

- Every triangle Tn in our triangulation is identified with a hypervertex vn ∈ V ;
- Every vertex xi connecting triangles {Tn0 , . . . , Tnk

} is identified with a net (hyperedge)
ei ∈ E connecting hypervertices {vn0 , . . . , vnk

}.
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- Every hypervertex vn ∈ V is given a vertex weight, measuring the computational cost
corresponding with triangle Tn. In our case, one needs to compute the same quantities for
every triangle.5 We set this to 1;

- Every net ei ∈ V is given a net weight. Mondriaan does not implement this, but to be
future-proof, we set this to 1 for all vertices vi not on the boundary and 0 for boundary
vertices. This reflects the fact that boundary vertices have no degree of freedom attached
to it and thus add no cost to the FEM-system.

Mondriaan will then find a partitioning of the vertices over the processors, such that the total
communication volume is minimized while balancing the computation cost. Remember that vertices
in the hypergraph correspond to triangles in the triangulation. This implies that Mondriaan gives
us a triangle distribution with the following properties:

Communication Volume =
D−1∑
i=0

|Π(i)|(|Π(i)| − 1) is minimal for

|T q| ≤ (1 + ε)
|T |
p

0 ≤ q < p.

One intuitively sees that this minimizes the total communication while balancing the computation
cost of the matrix-vector product. Unfortunately we were not able to derive an explicit BSP cost
estimation for our algorithm, as the amount of triangles per processor is not directly related to
the amount of computation needed in the processing step. We are not entirely sure whether
the distribution Mondriaan creates actually satisfies these constraints as it lacks some features in
hypergraph partitioning (such as net weights as described above). One could resolve this by using
a different partitioner; see §10.

In our implementations we chose ε = 0.1, as this seems to generate reasonable distributions. An
example of a distributions is given by the cover image. This represents the triangle distribution
of a triangulation for the regular 8- and 5-polygon. The different colors indicate parts of the
triangulation that are owned by different processors. The triangulation on the left is divided
among 16 processors, the right one among 64 processors.

6.8. Implementation details. The algorithms presented so far as mostly given in pseudo-code.
Here we want to hightlight a few implementation details that might be oversimplyfied in pseudo-
code.

FEM Matrix. Algorithm 3 gives way to assemble the stiffness matrix. Here we assumed to have a
method for inserting or adding nonzeros at arbritary positions in the matrix. However, this is not
easily done in most data structures for sparse matrices as we do not know the indices holding a
nonzero beforehand. We adapt the following strategy: we first create a list of all the nonzeros to
add together in the coordinate scheme (i, j, aij). This list will contain multiple elements with the
same index i, j when the basis function i and j interact on multiple triangles. Afterwards, we know
exactly what indices contain a nonzero. We then convert this triple format to the ICRS format
([Bis04, p. 171]), after which we remove the duplicate nonzero entries by summing their values.

As the matrix is symmetric we only store the lower triangular part. In Algorithm 4 we calculate
the matrix-vector product of the stiffness matrix and a vector. Algorithms for this follow easily
from the ICRS data structure. We implemented this like [Bis04, Alg. 4.4], with a slight alteration
to use symmetry.

5In more advanced Finite Element methods where the polynomial degree is different for each triangle, this would
scale with the polynomial degree.
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Indexing. In Algorithm 4 we have to communicate values corresponding to a shared vertex. Here
we have an indexing problem, as each (shared) vertex has a different local index on each processor.
We solve this by using the orginal, or global index. This is the index of the vertex in the initial
triangulation. Each processor uses mpi_send with the global index as tag to send the value to the
other processors. Furthermore, each processor gets an array global2local in the init stage that
converts a global vertex index to a local one.

In superstep (1) of Algorithm 4, we do not have to communicate (us)i values if Π(i) = {s}. To
do this efficiently we have chosen to first store the shared vertices and then stored the vertices for
which we have Π(i) = {s}. As processor s is the only processor we do not need to store the entire
processor set for this vertex.

7. Testing the new algorithm: numerical results

Initially, we had created a very large set with test triangulations to run our implementation on.6

After our session on the second to last day, Raymond went home to fix some existing bugs in the
code, enabling us to scale up even bigger. The final test run is therefore not on a large amount of
small systems, but rather on one system of real-life proportions.

To compare our new algorithm with the original parallel CG implementation, we further created
a script that explicitly creates the stiffness matrix and right-hand side, and writes them to file. As
our original implementation allows for loading right-hand sides from file, we were able to plug-and-
play.

First, we will compare the total iteration time over a regular 5-sided polygon (as depicted on the
cover image). Figure 5 gives titer as a function of n (number of refinements), for different processor
counts. We see that for small systems (n < 5), parallelization is of no use. There is a distinct
moment where parallelization on a shared-memory system starts to make sense – between n = 5
and n = 6. This is the moment where computation time outweighs the overhead of communication.
For non-shared memory systems, this moment is still visible. Around n = 7, we see that iteration
time for p ∈ {32, 64} is about the same as for p = 1, but for n > 7, we see that it actually performs
better. For n ≥ 10, we see that p = 64 is actually faster than p = 16, indicating that non-shared
might win over shared-memory systems from here. The beauty is that these points actually hold
for both graphs – the FEM algorithm and the CG algorithm.

Next, let’s look at a small system where parallelization is of no use. We take n = 5, and
leave out p ∈ {32, 64} as these are orders of magnitude slower. See Figure 6. Something that is
immediately clear, is that tip increases exponentially in p while tmv and tinit change in a much less
defined manner. This is because of the small computation time and the large h-relation of the inner
product.

Lastly, let’s look at our real-life example. We made 10 uniform refinements, yielding 2.6M vertices
and 5.2M triangles.7 Running this requires k = 4352 iterations. We will discuss Figure 7. One
thing we see is that in both algorithms,

- tinit seems more or less invariant under the processor count;
- tmv is the most substantial step;

6From the original report. We chose to run our implementation on a few regular polygons with sides k ∈ {3, . . . , 8},
creating initial triangulations with k triangles (put a vertex in the middle and connect each edge with this vertex
to create a triangle). We then made n uniform refinements for n ∈ {1, . . . , 7}, each time quadrupling the amount of
triangles in the triangulation. This yielded a vast amount of test data with D between 6 and 48768. On each of these
triangulations, we used p ∈ {1, 2, 4, . . . , 64}.

7In fact, we even created a regular 8-polygon with 11 uniform refinements (which is 1.2G of mesh data alone), but
for this system, we were unable to create a FEM matrix so no comparison with the original CG was possible.
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Figure 6. Comparison between timing results of the different algorithms. Left:
FEM algorithm; right: CG algorithm.
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Figure 7. Taking a regular 5-polygon with 10 uniform refinements (for a total of
N = 5.2M triangles and D = 2.6M degrees of freedom). Left: timing results for our
FEM implementation. Right: original CG implementation.

- tip decreases in p for p < 24 and increases there-after;
- tip is more or less the same for both algorithms;
- If we were to look at higher processor counts, tip will get the overhand (we already saw this

happening far earlier with smaller systems).

The main difference is the fact that tmv is a factor 4 faster in the new case versus the old case.8

The total speedup factor is around 3. If we look at disk storage, the new algorithm requires around
a factor 6 less storage space.9

8. Conclusion

In this report we have developed two parallel CG algorithms for solving Ax = b, with A a
sspd matrix. The first algorithm works by defining a distribution for the nonzeros of A. We then
use bspmv and a slightly altered version of bspip to create a parallel CG implementation. This

8This has to do with the fact that the two matrix-vector algorithms are different: (1) we exploit the geometrical
information of the FEM system, thereby needing less communication and not needing the fanout superstep, (2) the
matrix-vector product is now symmetric, avoiding cache misses.

9This is a result of the fact that we are, in the FEM case, saving meshes to disk whereas in the regular CG case,
we save matrices.
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version distributes the elements Aij and therefore works for any sspd matrix. We have tested this
method for a set of random generated matrices. Unfortunately, our method of matrix generation
had some deficiencies. The matrices it produces are almost diagonal, which resulted in distorted
timing results: the CG method converges really quick, and we do not benefit from parallelizing.

In the second part we looked at a specific class of sspd matrices, namely the stiffness matrices
comming from FEM systems. After creating such a method we can use the parallel CG method
from the first part to solve the FEM-system Ax = b. This works by creating the stifness matrix A
and then using Mondriaan to find a distribution for the non-zero elements.

As we are looking at FEM-matrices we have additional information available about the matrix
A. We can use the fact that the matrix is related to a triangulation of the domain. If we distribute
the triangles of this trianuglation over the processors, we are able to give another way of calculating
the matrix-vector product u = Av and the inner product 〈u, v〉. This approach is different from
traditional methods, in the sense that multiple processors will have to maintain a copy of certain
data.

We can use our triangle distribution and the according matrix- and vector-operations for imple-
menting parallel CG. Using a distribution given by Mondriaan, we have tested and compared both
methods. We saw that small FEM-system do not benefit from parallelizing. Once the systems
become large however, we saw a vast speed-up in both methods when comparing sequential with
the parallel version. Also, the parallel FEM cg method presented in the second part was about 2
to 4 times faster than the initial parallel CG method.

9. Discussion

Initially we worked out Exercise 4.6 from [Bis04]. We gathered a lot of results for different
densities, n and processor counts. After processing these results, we came to the conclusion that
most of this data was not representative for the actual performance of the parallel CG algorithm.
This comes from the fact that the matrices created are really strictly diagonally dominant, in other
words, they are almost diagonal matrices. This causes CG to converge in a low amount of iterations,
which results in a really small speed-up from parallelizing. A suggestion for the exercise might be
to gather matrices from the Matrix Market, or to use our FEM-matrices.

We wanted to work on FEM-matrices, as we have both done something with FEM in the past
of our academic career.10 Clearly, these matrices provide better input for testing the parallel CG.
Comparing the second method with the first method, we actually saw a nice speed-up. Again, we
generated a lot of data for several triangulations and its uniform refinements. When processing the
data, we again did not see a big speed-up in parallelizing. When writing the report we came to the
conclusion that the systems we tested were too small. So last-minute we generated some enourmous
triangulations and recreated all the timings. Here we finally saw the speed-up of parallelizing.

10. Future work

During the project we came up with a lot of interesting stuff we could have figured out. Here
we have a summary of things we could improve our work with.

10.1. Inner product. For large systems we saw that the time spent in matrix-vector products
reduces when using more processors, whilst the time spent in the inner product actually increases.
We want to figure out if we could possibly improve the time of the inner product. An example
would be demanding other properties from the triangle distribution. Another idea is to combine
ideas from the method proposed in [Bis04, Ex 1.1] with the old method.

10We actually got to use this method and our previous work, which is really cool. See [Ray14, Wes14].
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10.2. Preconditioned CG. The iterates xk obtained from the CG algorithm satisfy the following
inequality ([Sle14, Lect. 7]):

‖x− xk‖A
‖x− x0‖A

≤ 2

(√
κ2(A)− 1√
κ2(A) + 1

)k

≤ 2 exp

(
− 2k√

κ2(A)

)
where κ2(A) is the 2-condition number of A, which for spd matrices equates

κ2(A) =
λmax

λmin
.

It is therefore of interest to create a condition number that is as low as possible.
A preconditioner P of a matrix A is a matrix such that P−1A has a smaller condition number

than A. As the theoretical convergence rate is highly dependent on the condition number, we can
improve this using such a preconditioner. Instead of solving Ax = b, we will solve P−1Ax = P−1b.
This preconditioner should satisy:

• Convergence time should be faster for the preconditioned system. Normally, this means
that P is constructed as an “easily invertible” approximation to A;
• Operations with P−1 should be easy to perform;
• P should be (relatively) easy to construct.

If A is positive definite, the diagonal tells us a lot about the properties of A so it makes a certain
amount of sense to consider perhaps the simplest preconditioner of all:

P = diag(a11, . . . , ann).

The beauty of this preconditioner is the fact that its sparsity pattern is just like a dense vector.
Therefore, given a vector distribution (like we already have in our implementation), creating a
preconditioned version is easy. We did not have time to implement this, unfortunately.

10.3. Adaptive FEM. Another interesting aspect one could look at is adaptive FEM. Popularly
speaking, adaptive FEM aims to improve the quality of the FEM-solution uV by locally refining
the triangulation. This implies that only a part of the stiffness matrix will have to be recalculated.
A few interesting things to look at would be:

• Ensure each processor autonomously refines its own part of the triangulation;
• Make a load imblanace treshold that rebalances the entire triangulation after a few local

refinements.

10.4. Triangle distributions. As described before, Mondriaan does not yet implement all the
properties we want to use when partitioning a hypergraph. For better control of the triangle
distributions one could look at other partitioners, for example PaToH. [CA99]
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[FBFAB13] Oliver Fortmeier, H Martin Bücker, BO Fagginger Auer, and Rob H Bisseling. A new metric enabling

an exact hypergraph model for the communication volume in distributed-memory parallel applications.
Parallel Computing, 39(8):319–335, 2013.

http://www.staff.science.uu.nl/~bisse101/Mondriaan/mondriaan.html
http://www.staff.science.uu.nl/~bisse101/Mondriaan/mondriaan.html
http://www.staff.science.uu.nl/~bisse101/Mondriaan
http://www.staff.science.uu.nl/~bisse101/Mondriaan


19

[GL13] Gene H. Golub and Charles F. Van Loan. Matrix Computations: 4th Edition. Johns Hopkins University
Press, 2013.
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