
Induced Dimension Reduction
derivation and evaluation

Raymond van Venetië and Jan Westerdiep

February 1, 2015

Cover image. This chaotic graph illustrates the convergence of different (iterative)
methods applied to some system Ax = b.

1

“The IDR(s) algorithm presented in this paper is quite promising and seems to
outperform the state-of-the-art Bi-CG-type methods for important classes of prob-
lems.” [PS08].

1. Introduction

In this paper, we are concerned with solving Ax = b for a general (non-hermitian) matrix A. The
main purpose is to derive and evaluate the so-called IDR method (Induced Dimension Reduction)
against other wel established methods.

We start by introducing the concept of an iterave Krylov subspace solver. We assume the reader
to have seen these methods before, so these first sections mostly serve to refresh the memory. For
Hermitian matrices, the well known CG method is among the fastest iterative solvers. For non-
Hermitian matrices, such a holy grail cannot exist. [VF84] The Bi-CG method and its Hybrid
versions like Bi-CGstab and Bi-CGstab(`) are algorithms for general matrices, derived from CG
that share some of the powerful CG properties. For some time, most of the research has been in
deriving CG-like algorithms for general matrices. We will discuss these in §3 and §4.

In 2008, Sonneveld and van Gijzen published an article about the IDR(s) method. [PS08] They
generalize the old IDR method that was published in 1980 [WS80] and got more or less forgotten.
This generalized method, according to the authors, leads to similar or even better results than
Bi-CG derived algorithms. See the quote above, directly from their original paper.

The original IDR method actually was a predecessor to the Bi-CGstab method. To no surprise,
one can prove that IDR(1) and Bi-CGstab are, under mild conditions, mathematically equivalent.
We will derive a proof in §6.1.

To test the IDR(s) method, we conclude with our implementation and numerical results in §8 and
§9. Here we will compare the perforance of IDR(s) for against other iterative methods: GMRES,
Bi-CG and Bi-CGstab(`) for s, ` ∈ {1, 2, 4, 8}. GMRES produces the best residual in each Krylov
iteration – albeit against a high computational cost – and is therefore used as a benchmark to show
the relative convergence of other methods.

2. Krylov subspace methods

As noted in the introduction, we will look at Iterative Methods to solve Ax = b. These are
methods that approximate the solution of Ax = b iteratively by using an initial guess x0 and
generating a sequence of solutions xk converging to x. They generally use two closely related
quantities: the error of the approximate solution xk is

ek := x− xk

and the residual is

rk := Aek = A(x− xk) = b−Axk.
In particular, we will look at Krylov subspace methods. These are methods that search for solutions
in the Krylov subspace:

Kk+1(A, r0) := span{r0, Ar0, . . . , A
kr0} = {q(A)r0 | q ∈ Pk}.

Specifically, they find xk ∈ x0 +Kk(A, r0), so xk = x0 + yk for some yk ∈ Kk(A, r0). We can write
yk = q(A)r0 for some q ∈ Pk−1, and

(1) rk = b−Axk = r0 −Ayk = r0 −Aq(A)r0 = (1−Aq(A))r0 =: pk(A)r0 ∈ Kk+1(A, r0).

2

Note that, per construction, pk(0) = 1. On the other hand, for every polynomial pk ∈ Pk with
pk(0) = 1 we find that

pk(λ) = γkz
k + . . .+ 1 =⇒ pk(λ) = 1− z(γkzk−1 + . . .+ γ1) =: 1− zq(λ)

=⇒ pk(A)r0 = r0 −Aq(A)r0.

In other words, rk is a residual if and only if rk = pk(A)r0 for some polynomial pk ∈ Pk with
pk(0) = 1. Because of this characterization, we call

P0
k := {p ∈ Pk | p(0) = 1}

the set of residual polynomials. For Krylov methods the residual and approximate solution xk are
related by:

rk = r0 −Aq(A)r0

xk = x0 + q(A)r0.

Note that this convention – “Kk is a k-dimensional space”1 instead of “Kk contains rk” – is not
shared among all sources.

Most Krylov-type methods work by using a recurrence relation for the residual updates, hoping
to find residuals of decreasing norm. If such recurrence relations are given by

rk+1 = rk +AU~γ

then one can find the corresponding approximate solution by

xk+1 = xk − U~γ.

In this paper we derive some methods where we only state the recurrence relation for the residual.
In such cases one can use the above relation to find the corresponding update formula for the
approximate solution.

The initial guess x0 initializes the Krylov methods. In practice the common choice is x0 = ~0.
This can be justified by noting that if Krylov methods minimalize ‖b−Axk‖ with xk = x0 + q(A)r0

then this is equivalent to minimizing ‖(b − Ax0) − Aq(a)r0‖, i.e. applying the Krylov solver on a
different right hand side and the zero vector as initial guess.

One example of an iterative method that uses residual polynomials quite literally is LMR (Local
Minimal Residuals). This method finds residuals of the form

rk+1 := pk+1(A)r0, pk+1(z) := (1− αkA)pk(z)

where αk is chosen to minimize ‖rk+1‖2. The residuals satisfy the recurrence relation rk+1 =
rk−αkArk. Note that minimizing ‖rk+1‖2 is equivalent to choosing αk such that rk+1 ⊥ Ark. [Sle,
Ex 3.16]

2.1. GMRES. In the previous section we saw that Krylov subspace methods search for solutions
in the Krylov subspace. Some of these methods try to find residuals such that ‖rk‖2 gets small in
some sense. As rk ∈ Kk+1(A, r0) one may also wonder if we can find the best choice for rk, i.e. the
residual rk ∈ Kk+1 with the smallest 2-norm. We will now derive such a method.

1The case where the Krylov space does not expand is called a breakdown. In exact arithmetic, a breakdown of
this type means that the exact solution x is in the space x0 +Kk(A, r0).

3

Suppose we have an orthonormal basis Vk =
[
v1 · · · vk

]
for Kk(A, r0). We can compute

vk+1 by:

Expand: w = Avk,

Orthogonalise: ṽ = w − Vk~h′k, h′k := V ∗k w,

Normalize: vk+1 = ṽ/‖ṽ‖2.

If we define ~hk := (~h′>k , ‖ṽ‖2)>, then can formulate the Arnoldi relation:

AVk = Vk+1Hk.

The matrix Vk is orthonormal with span(Vk)=Kk(A, r0) and Hk is upper Hessenberg with columns
~hj (appended with zeros to match the dimension). For details we refer to any introductionary text
to Numerical Linear Algebra, e.g., [GHG13, LNT97, Sle].

One iterative method that uses this Arnoldi relation is GMRES (Generalised Minimal Residual).
[SS86] Take r0 = b−Ax0 and xk = x0 + Vk~yk for some vector ~yk ∈ Ck. In particular we have that
xk − x0 = Vk~yk ∈ K(A, r0) and that [Sle, Lec. 6A]

‖rk‖2 = ‖‖r0‖2e1 −Hk~yk‖2.

One can prove that [Sle, Lec. 6]

‖rk‖2 = min{‖pk(A)r0‖2 : pk ∈ P0
k} ⇐⇒ ‖rk‖2 = min{‖r0 −Ax̃‖2 : x̃ ∈ Kk(A, r0)}
⇐⇒ rk ⊥ Kk(A, r0)

⇐⇒ ~y = arg min{‖‖r0‖2e1 −Hk~y‖2 : ~y ∈ Ck}.

In other words, solving the equation above is equivalent to finding the residual with minimal norm.
This is exactly what GMRES does [Sle, Lec. 6]. This method is widely used as a reference point
in numerical analysis, for it finds the optimal approximate solution in the given Krylov space. The
method however relies on long recurrences as we have to orthoganalise against a space that grows
every iteration, making practical uses limited.

2.2. GCR. In LMR, the updated residual rk+1 has smallest 2-norm with respect to the quantities
of the previous iteration: rk+1 = rk − αkArk with αk that minimizes ‖rk+1‖2. Instead of only
looking at the last residual, we could generalise this by taking in consideration all the residuals
produced so far. In this case you would calculate the next residual by

rk+1 = rk − (αkArk + αk−1Ark−1 + · · ·+ α0Ar0) with ~α that minimizes ‖rk+1‖2.

This is what GCR does. [Sle, Lec. 5D] One can prove ([Sle, Lec. 6 Sl. 30]) that GCR and GMRES
are mathematically equivalent, in that they produce the same residuals.

3. CG and Bi-CG

The Conjugate Gradient method (CG) is a beautiful iterative solver for Ax = b with A a Her-
mitian positive definite matrix. It uses only a few inner products and one matrix-vector product
per iteration. The algorithm is given in Algorithm 1.

It can be seen as the Hermitian positive definite variant of GCR. [Sle, Ex. 5.18] Mathematically,
its approximate solutions xk minimize the error in the A-norm: [LNT97, Thm. 38.2]

CG finds xk ∈ x0 +Kk(A, r0) such that ‖ek‖Ais minimised.

4

Note that ‖x− xk‖A is minimal iff x− xk ⊥A Kk(A, r0) iff rk ⊥ Kk(A, r0). The residuals produced
by CG form an orthogonal basis for the Krylov subspace: [LNT97, Thm. 38.1]

(2) Kk(A, r0) = span{r0, . . . , rk−1}, r∗krj = 0 ∀ j < k.

One can introduce CG as an implementation of a basic iterative solver. In every step we have a
search direcion uk, and after choosing αk carefully we update the residual by

rk+1 = rk − αkck, ck := Auk.

Remember that we the corresponding approximate solution is now given by xk+1 = xk + αkuk.
The search direction is given as uk+1 = rk+1 − βk+1uk. We determine αk, βk+1 such that:

(3)

{
rk+1 = rk − αkAuk ⊥ rk
uk+1 = rk+1 − βk+1uk s.t. Auk+1 ⊥ rk.

Now for CG, (2) holds, expanding the above to

rk+1, Auk+1 ⊥ rk =⇒ rk+1, Auk+1 ⊥ span{r0, . . . , rk} = Kk+1(A, r0).

In other words, we find an orthogonal basis of Kk at the cost of orthogonalizing against one vector.

3.1. Bi-CG. There are a few approaches for generalizing CG to non-Hermitian systems. One
way2 is to solve the normal equations

A∗Ax = A∗b.

One disadvantage is that the condition number of this system is squared. Furthermore, the Krylov
subspace generated by A∗A is hardly optimal: suppose A is Hermitian, then the Krylov subspace
is generated by A∗A = A2, so only even polynomials are considered.

Another method is considered in the Bi-CG (Bi-orthogonal Conjugate Gradient) method. [Sle,
Ex. 8.3] It is an iterative solver for the equation Ax = b, where A does not need to be Hermitian.
Instead of looking the normal equations, one can look at the following ‘extended’ system, for a

given n-vector b̃:

(4)

[
0 A
A∗ 0

] [
x̃
x

]
=

[
b

b̃

]
.

Note that the left hand side reduces to [
Ax
A∗x̃

]
,

so a solution of this extended system provides us with a solution for the original system.
Furthermore, the matrix in (4) is Hermitian, so CG can be applied to this system. Without

going into details, Bi-CG is just that: an implementation of CG applied to this extended system.
[Sle, Ex. 8.3] The algorithm is given in Algorithm 2.

2This method is called CGLS, for CG applied to Least Squares. It solves the normal equations, thereby effectively
solving the Least Squares problem. [Sle, Ex. 8.2]

5

Algorithm 1: Conjugate Gradient method

Select x0 ∈ Cn;

x = x0, r = b−Ax0;

u = r, ρ = ‖r‖22;

while ‖r‖2 > tol do
c = Au;

σ = c∗u, α = ρ/σ;

r← r− αc;

x← x + αu;

ρ′ = ρ, ρ = r∗r;

β = −ρ/ρ′;
u← r− βu;

end

Algorithm 2: Bi-orthogonal CG method

Select x0, r̃ ∈ Cn;

x = x0, r = b−Ax0;

u = r, ρ = ‖r‖22, ũ = r̃;

while ‖r‖2 > tol do
c = Au, c̃ = A∗ũ;

σ = r̃∗c, α = ρ/σ;

r← r− αc, r̃← r̃− αc̃;

x← x + αu;

ρ′ = ρ, ρ = r̃∗r;

β = −ρ/ρ′;
u← r− βu, ũ← r̃− βũ;

end

3.2. Properties of Bi-CG. Mathematically, Bi-CG finds

xk ∈ x0 +Kk(A, r0) such that rk ⊥ Kk(A∗, r̃0).

Note that the residuals are orthogonal to a different set of residuals, the so-called shadow residuals.
This bi-orthogonality (as opposed to CG’s orthogonality) of residuals is reflected in the name –
Bi-orthogonal CG or Bi-CG.

In case A is Hermitian and r̃0 = r0, we see that Bi-CG is equivalent to CG, as it finds xk and rk
with the same properties. [Sle, Ex. 8.4]

Like in CG (cf. (3)), we find in Bi-CG that the update vector uk and residual rk in step k satisfy:

(5)

{
rk+1 = rk − αkAuk ⊥ r̃k
uk+1 = rk+1 − βk+1uk s.t. Auk+1 ⊥ r̃k.

Now let r̃0, . . . , r̃k be a Krylov basis of Kk+1(A∗, r̃0). One can prove [Sle, Ex. 8.9] that

(6) rk+1, Auk+1 ⊥ r̃k =⇒ rk+1, Auk+1 ⊥ Kk+1(A∗, r̃0).

In other words, if we choose αk, βk+1 such that we are orthogonal to r̃k, then we are orthogonal to
every shadow residual and equivalently Kk+1(A∗, r̃0).

The scalars αk and βk+1 can be calculated in the following way: [Sle, Ex. 8.9]

ρk := r̃∗krk, σk := r̃∗kAuk, αk :=
ρk
σk
, βk+1 :=

ρk+1

ρk
.

3.3. A basis for the shadow Krylov subspace. In the last section we assumed to have a
basis r̃0, . . . , r̃k of the shadow Krylov subspace Kk+1(A∗, r̃0). In fact, without knowing it, we have
already constructed such a basis!

Bi-CG relies on the following argument. One can prove that the following update formulas
produce a basis of the shadow space: [Sle, Ex. 8.10]

(7)

{
r̃k+1 = r̃k − αkA∗ũk.
ũk+1 = r̃k+1 − βk+1ũk

so to produce r̃k+1 and ũk+1 we only need ũk and r̃k.
Remember that we could write rk = pk(A)r0 for some residual polynomial of degree k. Using

this notation, we see that above formulas reduce to r̃k = pk(A
∗)r̃0 – they use the same residual

polynomial as rk, only conjugated. This way, we get a basis for Kk(A∗, r̃0) for ‘free’.

6

3.4. Other shadow Krylov space bases. Of course, there are other possibilities for a basis of
this shadow Krylov space. With another basis than the one in the previous section, one has

(8) rk = pk(A)r0, r̃k = qk(A
∗)r̃0

with qk some residual polynomial of degree exactly k (so that the regular and shadow residuals use
different polynomials).

One such method – inspired by the LMR approach (see [Sle, Ex. 8.10]) – creates a shadow
residual r̃k+1 = (I − ωk+1A

∗)r̃k with ωk+1 such that r̃k+1 has minimal norm:

(9) r̃k+1 = (I − ωk+1A
∗)r̃k = r̃k − ωk+1A

∗r̃k, ωk+1 = arg min
ω
‖r̃k+1‖2 =

〈r̃k, A∗r̃k〉
〈A∗r̃k, A∗r̃k〉

.

This last equality follows from, e.g., [Sle, Ex. 3.18].

3.5. Transpose-free Bi-CG. One of the drawbacks of Bi-CG is the fact that it requires us to
compute with A∗. In real-life applications, many matrices are so-called black boxes, in the sense
that there is a routine f for which f(x) = Ax. In other words, there is no explicit matrix A
available. In such cases, computation with A∗ might be hard or even impossible.

One can avoid the calculation of A∗. First, note that A∗ is only used in the computation of r̃k,
and with this, in the computation of ρk and σk only. Expand r̃k = pk(A

∗)r̃0, and move the residual
polynomial to the other side of the inner product:

(10) ρk := r̃∗krk = (pk(A
∗)r̃∗0)rk = r̃∗0pk(A)rk, σk := r̃∗kAuk = r̃∗0Apk(A)uk.

In Bi-CG, one uses r̃k, rk and uk to find ρk and σk. In transpose-free Bi-CG, one uses rk, pk(A)rk,
pk(A)Auk and the above identities to find ρk and σk without using A∗.3

4. Hybrid Bi-CG methods

Note that as αk and βk+1 in (7) are the unique scalars that orthogonalize their respective quan-

tities, a change of the shadow basis does not change the residuals rBi−CGk+1 that Bi-CG produces.
Moreover, going from regular Bi-CG to transpose-free Bi-CG does not change these residuals either.
Combining these results (in mathematical notation, combining (8) and (10)) can yield interesting
variations.

Given some residual polynomial qk of degree exactly k as in (8), transpose-free Bi-CG computes

inner products using the quantity qk(A)rBi−CGk . If we define the residual to be this quantity, as

opposed to rBi−CGk itself, then we call this a Hybrid Bi-CG method. In more mathematical terms,
define

(11) rk := qk(A)rBi−CGk , uk := qk(A)uBi−CGk , r′k := qk(A)rBi−CGk+1 , u′k := qk(A)uBi−CGk+1 .

Hybrid Bi-CG methods use these four quantities to generate approximate solutions xk, x
′
k subject

to

rk = b−Axk, r′k = b−Ax′k.
Note that these approximate solutions are different from the ones that Bi-CG generates, but because
they do in fact use rBi−CGk in their computations, we call them Hybrid Bi-CG methods.

3One can accomplish this by saving both Bi-CG residuals and so-called CGS (CG squared) residuals. See [TFC97]
and [Sle, Ex 8.12].

7

4.1. Bi-CGstab. Bi-CGstab [VdV92] is a Hybrid Bi-CG method, where qk = qstabk is taken to

be a stabilisation or acceleration polynomial.4 This immediately explains the name of the method
and the effect it is hoped to have.

Let qstabk+1(λ) := (1 − ωk+1λ)qstabk (λ) be the uniquely defined residual polynomial of the LMR
approach from (9). We will use the notation from (11).

Note that A and qstabk (A) commute, so the scalars ρk and σk become

ρk := r̃∗kr
Bi−CG
k = r̃∗0q

stab
k (A)rBi−CGk = r̃∗0rk

σk := r̃∗kAu
Bi−CG
k = r̃∗0q

stab
k (A)AuBi−CGk = r̃∗0Auk.

Now, familiar recurrence relations hold for u′k and r′k (cf. (5)):{
r′k = rk − αkAuk s.t. r′k ⊥ r̃0

u′k = r′k − βk+1uk s.t. Au′k ⊥ r̃0

and for rk+1 and uk+1 (cf. (9)): ωk+1 := arg minw ‖r′k − ωAr′k‖2
rk+1 = (I − ωk+1A)r′k
uk+1 = (I − ωk+1A)u′k

.

These recurrence relations yield the following Bi-CGstab Algorithm 3. [GLS10, Alg. 2] A slightly
more mathematical version with different notation, Algorithm 4, was also found in [GLS10, Alg. 1]
and will come in handy in §6.

Algorithm 3: BiCGstab method

Select x0, r̃ ∈ Cn;

x = x0, r = b−Ax0;

u = r;

while ‖r‖2 > tol do
c = Au;

σ = r̃∗c;

α = σ−1r̃∗r;

r′ = r− αc; x′ = x + αu;

s = Ar′;

ω = s∗r′/s∗s;

β = σ−1r̃∗s;

u′ = r′ − βu; u = u′ − ω(s + βc);

r = r′ − ωs; x = x′ + ωr′;

end

Algorithm 4: Bi-CGstab (revised)

Select x0, r̃ ∈ Cn;

x = x0, r = b−Ax0;

u = r;

while ‖r‖2 > tol do
s = Au;
α such that

v = r− sα ⊥ r̃0;
Select ω
r = (I− ωA)v;

β such that
Au′ = A(v − βu) ⊥ r̃0;

u′ = v − βu;

u = (I− ωA)u′;

end

4.2. Bi-CGstab(`). Bi-CGstab uses the first degree LMR polynomial as qk to (hopefully) stabi-
lize the Bi-CG method. Of course, this can be generalized. In Bi-CGstab(`), the polynomial qk is
chosen as the product of Minimal Residuals of degree `. This means that we stabilize the residual
every ` steps, by a polynomial of degree `: for k = m` + ` we have qk = qm`+` = omqm` with om
an `-degree Minimal Residual polynomial. This can be implemented by looping ` times over the
‘Bi-CG’ part and then applying the stabilizing polynomial om. Details can be found in the original

4The theoretical foundations for the hybrid Bi-CG methods seem to be sparse. We rely on empirical evidence that
this method accelerates the convergence.

8

artice. [SF93] For ` = 1, Bi-CGstab(`) is exactly the Bi-CGstab method. Note that Bi-CGstab(`)
requires more memory and has additional computation cost per MV if ` grows.5 For some ` ≥ 2 it
appears that Bi-CGstab(`) produces better convergence behaviour than Bi-CGstab. [SF93, §5]

5. IDR Theory

We will now explain the IDR (Induced Dimension Reduction) method. Suppose we have a
sequence of nested subspaces such that

{0} = GK ⊂ · · · ⊂ G2 ⊂ G0 = Kn(A, r0)

and a function that transfers our residual rk ∈ Gj to rk+1 ∈ Gj+1 using linear transformations, then
we will eventually find a residual of rk = 0. As the residual is updated in a linear way, we can apply
these transformations to the initial solution x0 to find approximate solutions xk corresponding
to rk. This naturally leads to an iterative method that finds the exact solution x in fintely many
steps.

The IDR Theorem gives us exactly such a sequence of nested subspaces.

5.1. The IDR Theorem.

Theorem 1 (IDR Theorem). Let A be a matrix in Cn×n, R̃ a full rank matrix in Cn×s and (ωj)
be a sequence of non-zero scalars. Let r0 be a nonzero vector in Cn and let G0 = Kn(A, r0) be the
full Krylov space. For the sequence (Gj) of subspaces defined by

G′j := Gj ∩ R̃⊥, Gj+1 := (I − ωj+1A)G′j ,
we have that

(1) Gj+1 ⊂ Gk;

(2) If R̃⊥ does not contain an Eigenvector of A, then

Gj+1 = Gj ⇐⇒ Gj = {0}.

This IDR theorem (cf. [PS08, §2]), of which the proof is beneath here, shows that we can create
a sequence of subspaces (Gk) all contained in the previous. Under some mild condition – R⊥ not
containing an Eigenvector of A – it holds that this nesting is strict, meaning that there is a finite

n such that Gn = {0}. The probability of this happening is zero when we take R̃ to be a random
matrix.

If we manage to create some iterative solver which finds residuals rk ∈ Gk, the IDR theorem tells
us that we will find an exact solution in finitely many steps.

Proof. (1) We proceed by induction. As G0 is a full Krylov subspace, it is an A-invariant
subspace, so we find that

(I − ω0A)G0 ⊂ G0.

Now as G0 ∩ R̃⊥ ⊂ G0 we see that

G1 = (I − ω0A)(G0 ∩ R̃⊥) ⊂ (I − ω0A)G0 ⊂ G0

completing the basis step.
Assume Gk ⊂ Gk−1 holds for some k > 0. Then G′k ⊂ G′k−1 and for x ∈ Gk+1 we find per

definition:

x = (I − ωkA)y with y ∈ G′k ⊂ G′k−1 =⇒ (I − ωk−1A)y ∈ Gk.

5The number of AXPY and DOT operations grows if ` becomes larger, see [SF93, Tbl. 3.1].

9

As both y ∈ Gk and (I − ωk−1A)y ∈ Gk, we have that Ay ∈ Gk, implying that also
x = (I − ωkA)y ∈ Gk. From here, it follows that Gk+1 ⊂ Gk.

(2) the implication from right to left is trivial, so we will only look at the left to right part of
the bi-implication.

Given that Gk+1 = Gk, suppose that Gk 6= {0}. The proof will consist of two parts: first,
we will show that Gk = G′k = Gk+1. Next, we will prove that under the assumption, Gk
contains an Eigenvector.

We know that G′k = Gk ∩ R̃⊥, so that dimG′k ≤ dimGk.
Let r = dimG′k. Then there is a n× r matrix B whose columns form a basis of G′k so that

rank B = r. As Gk+1 = CG′k for C = I − ωkA, we see that rank CB = dimGk+1. Using
that rank CB ≤ rank B, it must hold that dimGk+1 ≤ dimG′k.

We find

dimGk+1 ≤ dimG′k ≤ dimGk =⇒ dimG′k = dimGk =⇒ G′k = Gk.

Using this, we see that Gk+1 = (I−ωkA)Gk = Gk, meaning that Gk is (I−ωkA)-invariant.
Now, recall the basis matrix B. Every column of the product (I−ωkA)B is a vector in Gk and
thus can be written in terms of its basis, to find an r× r matrix U with (I −ωkA)B = BU .
Let x be an Eigenvector of U with Ux = λx and x 6= 0. Then

λx = Ux =⇒ Bλx = λ(Bx) = BUx = (I − ωkA)Bx

so that (Bx, λ) is an Eigenpair of I − ωkA, so that (Bx, (1 − λ)/ωk) is an Eigenpair of A
with Bx in Gk.

When R̃⊥ ⊃ G′k does not contain an Eigenvector of A, we thus must have Gk = {0},
completing the proof.

�

The IDR theorem can be given in a more general form (see [Sle, Thm 11.1]), but the above
formulation will suit our purposes. Furthermore, we can extend the IDR theorem to include the
rate at which the dimensions of Gj shrink. For the proof we refer to the literature, e.g., [PS08,
Thm 3.1].

Theorem 2. Use the same notation and conditions as in Theorem 1. Let dim(Gj) = dj; then the
sequence dj is monotically nonincreasing and satisfies

0 ≤ dj − dj+1 ≤ dj−1 − dj ≤ s.

As noted in the original IDR(s) article [PS08] this implies that (in exact arithmetic) the dimension
reduction per step is between 0 and s. If the dimension reduction is always equal to s, we find
that IDR(s) needs at most (s+ 1)ns = n+ n

s matrix-vector products to find the exact solution. In
practice the dimension reduction is ‘almost always’ equal to s, since we have finite precision.

In the next sections we will use the IDR theorem to derive a Krylov-type iterative solver: IDR(s).

5.2. Finding residuals: IDR. Recall that Krylov solvers find approximate solutions xk for
which the residuals rk = b − Axk satisfy rk = qk(A)r0 (see (1)). Here, qk is a residual polynomial
of exact degree k. From this, it follows that rk ∈ Kk+1(A, r0) \ Kk(A, r0).

10

One can prove that general Krylov-type solvers satisfy the following recurrence relations:6

(12)


rk+1 = rk − αAvk −

∑̀
i=1

γi∆rk−i

xk+1 = xk − αvk −
∑̀
i=1

γi∆xk−i

, vk ∈ Kk+1(A, r0) \ Kk(A, r0)

with ∆uk := uk+1 − uk the forward difference operator. Here ` is the depth of recursion. If
` = k then we have deep recurions like GMRES. We are interested in methods that require small
recursion, with ` fixed and small, like CG.

As stated before, we want to find residuals in the shrinking spaces given by the IDR theorem.
These spaces ultimately shrink to {0}, so we will find the exact solution in a finite number of steps.
Let a residual rk be given in Gj . How can we find a residual rk+1, and when is it in the next space
Gj+1?

The IDR Theorem states that rk+1 ∈ Gj+1 if we can write

rk+1 = (I − ωj+1A)vk with vk ∈ Gj ∩ R̃⊥.

On the other hand, we want the residual rk+1 to be of the general Krylov form given in (12), as
this allows for easy updating of the approximate solution. A quick inspection reveals that for this
to happen, the vk must be of the form

(13) vk = rk −
∑̀
i=1

γi∆rk−i.

Subsituting this into our previous relation of rk+1 we find that

rk+1 = (I − wj+1A)vk = rk − ωj+1Avk −
∑̀
i=1

γi∆rk−i.

The equations above describe a way to transfer residuals from rk ∈ Gj to rk+1 ∈ Gj+1. We first

construct a residual vector vk ∈ Gj ∩ R̃⊥, which we then lift to Gj+1 by applying the operator
I − ωj+1A.

The question arises how and when we can find vk such that vk ∈ Gj ∩ R̃⊥. To answer this
question, we introduce the residual (difference) matrix

Sk =
[
∆rk−1 · · · ∆rk−s

]
,

reducing the relation of rk+1 to

rk+1 = rk − ωj+1Avk − Sk~γ.

The requirement that vk ∈ R̃⊥ ∩ Gj gives us two conditions:

(1) vk ∈ R̃⊥, which reduces to the constraint R̃∗vk = 0. This is an s × ` linear system for the
coefficients γi, which is uniquely solvable iff ` = s. Now per definition of vk in (13), solving

R̃∗vk = 0 is equal to solving the equation R̃∗Sk~γ = R̃∗rk for ~γ. After solving this equation
for ~γ we find vk as vk = rk − Sk~γ.

6The source used here is [PS08, p. 1038]; note that their definition of Kk impies that rk ∈ Kk, while ours asserts
dimKk ≤ k. Compare with caution.

11

(2) vk = rk − Sk~γ ∈ Gj , which happens if span(Sk) ⊂ Gj and rk ∈ Gj , or equivalently, if
rk−i ∈ Gj for i = 0, . . . , s. With ‘normal’ dimension reduction (cf. Thm. 2) we expect this
to happen only for k ≥ (j + 1)(s+ 1).

This gives rise to the following Lemma.

Lemma 1. Use the notation introduced above. If rk−i ∈ Gj for i = 0, . . . , s, then we can find
rk+1 ∈ Gj+1 in three steps:

• Calculate the ~γ that solves R̃∗S~γ = R̃∗rk;

• Create vk = rk − S~γ ∈ Gj ∩ R̃⊥;
• Lift vk to find a residual in Gj+1: rk+1 = (I − ωj+1A)vk.

This method leads to the IDR(s) algorithm. Remember that Gj+1 ⊂ Gj , so the above Lemma
still holds if some of the residuals rk−i are contained in Gj+1.

Let s+ 1 residuals rk−i in Gj be given. We can lift these to s+ 1 residuals in Gj+1 by applying
the Lemma to each rk−i (and of course updating the matrix Sk accordingly). This way, we find a
dimension reduction every s + 1 steps.7 Every time a dimension is reduced, (or equivalently, we
find the first residual rk in Gj+1) we can choose a new ωj+1. Later residuals rk+1, . . . , rk+s in this

space must use the same ωj+1. One must be careful when ωj+1 ≈ 0 or R̃∗S is (close to) singular, as
this causes breakdowns or stagnation. See §5.4 and §5.5 for a little more detail on these subjects.

5.3. Algorithm derivation. We formalise the previous idea so that we can derive an explicit
IDR(s) algorithm. A relation between each residual and its approximate solution is given by
∆rk = −A∆xk.

8 Define the matrix Uk:

Uk =
[
−∆xk−1 · · · −∆xk−s

]
=⇒ Sk = AUk.

The algorithm for calculating rk+1 from previous residuals can now be introduced.

Lemma 2. Suppose we have Sk = AUk, rk = b−Axk and ω ∈ C. Let ~γ be such that

v := rk − Sk~γ ⊥ R̃.

Then with

rk+1 := (I − ωA)v, sk := ∆rk, uk := −Uk~γ − ωv, xk+1 := xk − uk
we have that

sk = Auk and rk+1 = b−Axk+1.

Proof. This follows easily. We have that

Auk = −AUk~γ − ωAv = −Sk~γ − ωAv = v − rk − ωAv = rk+1 − rk = ∆rk = sk

and

rk+1 = rk + sk = b−Axk +Auk = b−A(xk − uk) = b−Axk+1. �

As noted in [GLS10] the above lemma gives us multiple ways of computing sk and rk+1, all with
their own stability properties.

7For the actual implementation of the algorithm, we also need to update the approximate solution xk, therefore
needing the update vectors uk.

8∆rk = rk+1 − rk = A(x− xk+1 − x + xk) = A(−∆xk).

12

Corollary 1. Using the definitions given in Lemma 2, we find that

sk = Auk = −Sk~γ − ωAvk = ∆rk

and
rk+1 = v − ωAv = ∆rk + rk = b−Axk+1.

Lemma 1 tells us under what conditions rk+1 is in the ‘next’ subspace Gj+1. To initalize the
algorithm, we need matrices Us and Ss = AUs with the given properties. We will discuss different
approaches in the implementation details of §8. Now we will discuss how to choose ω.

5.4. Choice of ω. By the IDR Theorem, we are free to choose ωj+1 when lifting the first residual
to Gj+1. The other s residuals must be lifted using this same ωj+1. As suggested in [PS08, §4.2]
we select wj+1 such that the norm of rk+1 is minimized, using the LMR appoach (cf. (9)). There
are also other possibilities: see, e.g., [vGS11].9

With our LMR strategy, we get for s = 1 an algorithm that is mathematically equivalent to
Bi-CGstab: see §6.

5.5. Orthogonalising U and S. Numerical instabilities can occur if the matrix R̃∗S is badly

conditioned. One can help the conditioning in two ways: first, we can orthogonalise R̃, which is
cheap because this matrix is constant. The second is more involving: one can orthogonalise the
matrices S and U after every new residual. This is implemented in [vG]; we chose not to investigate
this method in more detail. See [vGS11] for a lot more details.

5.6. Algorithm. Based on Lemma 2, we are now ready to give the IDR(s) algorithm. The
straightforward and most intuitive implementation is given in Algorithm 5. [GLS10, Alg. 1] As
noted in Corollary 1, we have a lot of freedom in the way we calculate the vectors sk and rk+1.
Another (equivalent) method is presented in Algorithm 6. [PS08, Fig. 3.1] It is mentioned in [PS08,
§4.3] that this choice of freedom is numerically more stable.

9This method, called the “maintaining the convergence” strategy resolves stagnation in systems where ω is so
small that the other iteration parameters cannot be computed with sufficient accuracy.

13

Algorithm 5: IDR(s)

Select x;

Select matrices R̃,S,U such that S = AU;

r = b−Ax;

i = 1; j = 0;

while ‖r‖2 > tol do

Solve ~γ from R̃∗S~γ = R̃∗r;

v = r− S~γ;

c = Av;

if j = 0 then
ω = c∗v/c∗c

Uei = −U~γ + ωv;

x = x + Uei;

rold = r;

r = v − ωc;

Sei = r− rold;

i = i+ 1;

if i > s then
i = 1;

j = j + 1;

if j > s then
j = 0;

end

Algorithm 6: IDR(s)

Select x;

Select matrices R̃,S,U such that S = AU;

r = b−Ax;

i = 1; j = 0;

while ‖r‖2 > tol do

Solve ~γ from R̃∗S~γ = R̃∗r;

v = r− S~γ;

if j = 0 then
c = Av;

ω = c∗v/c∗c;

Uei = −U~γ − ωv;

Sei = −S~γ − ωc;

else
Uei = −U~γ − ωv;

Sei = AUei;

end

x = x−Uei;

r = r + Sei;

i = i+ 1;

if i > s then
i = 1;

j = j + 1;

if j > s then
j = 0;

end

6. IDR for s = 1

Notice the similarity between Bi-CGstab (Algorithm 4 on page 7) and the IDR(s) algorithm
above. In this section, we will prove that they are mathematically the same for s = 1. Before we
can prove this, we will derive an IDR(s) algorithm for the special case where s = 1.

Remember that the residuals in the IDR(s) algorithm are lifted to the next space after s + 1
steps. In Bi-CGstab, the residuals are taken from a smaller space in every iteration, as we take
them orthogonal to some growing shadow space. We therefore can only ‘hope’ that every first lifted
residual in the IDR(s) algorithm corresponds to the residual produced by Bi-CGstab. As s = 1, we
want to prove that

rIDR
2k ≡ rBi-CGstab

k .

To solve this indexing problem, we will derive an explicit algorithm for s = 1 where the residual is
only updated every ‘lifted’ iteration.

Look at Lemma 2. As s = 1, the matrices Sk and Uk used in the algorithm reduce to the single

vectors sk−1 and uk−1 respectively, while the matrix R̃ reduces to a vector which we denote by r̃0.
In Algorithm 7 we give the IDR(1) algorithm where we unroll the for-loop needed to lift a single
residual to the next space. We (indeed) see that the residual is updated twice for every iteration
of IDR(1).

14

We can use the identities in Corollary 1 to write Algorithm 7 in an alternative form, where we
only store the ‘lifted’ residual. Using indices k+ 1 and k+ 2 for the first and second vector updates
respectively, we find that

vk+1 = rk − sk−1αk+1

= rk−1 + sk − skαk+1

= rk−1 + sk (αk − 1)︸ ︷︷ ︸
α′
k

which leads to the update formula uk = (α′k + 1)uk−1 + ωj+1vk+1. Similarly, we can calculate sk
by sk = (α′k + 1)sk−1 + ωj+1Avk+1. Note that this allows us to compute rk+1 by only using rk−1,
i.e., the intermidate residual update rk is not needed. The vectors u and s still need two updates
every iteration: we suggest naming the intermidiate results with a prime (u′ and s′). This leads to
Algorithm 8.

Algorithm 7: IDR(s) for s = 1

Select x, r̃0 ∈ Cn;

r = b−Ax ;

u = r, s = Au;

while Condition do
α such that

v = r− sα ⊥ r̃0;

rold = r;
Select ω
r = (I− ωA)v;

u = uα+ ωv;

s = r− rold;

β such that
v = r− sβ ⊥ r̃0;

rold = r;

r = (I− ωA)v;

u = uβ + ωv;

s = r− rold;

end

Algorithm 8: IDR(s) for s = 1

Select x, r̃0 ∈ Cn;

r = b−Ax ;

u = r, s = Au;

while Condition do
α = (1 + α′) such that

v = r− sα′ ⊥ r̃0;

Select ω
r = (I− ωA)v;

u′ = uα+ ωv;

s′ = sα+ ωAv;

β such that
v′ = r− s′β ⊥ r̃0;

u = u′β + ωv′;

s = Au;

end

6.1. Comparison Bi-CGstab. Algorithm 8 clearly ‘looks’ like Bi-CGstab given in Algorithm 4
(page 7).10

We are now ready to compare IDR(1) (given in Algorithm 8) with Bi-CGstab (Algorithm 4).
Assuming that vIDR

k+1 = vBi-CGstab
k+1 and that the same selection procedure is used for ωk+1, we

immediately see that rIDR
k+1 = rBi-CGstab

k+1 . What is left to check is the relation in vk+1 and uk+1. We
start with checking the latter.

10This Bi-CGstab algorithm was given in a more IDR suggestive form.

15

For IDR we find

uIDR
k+1 = u′k+1βk+1 + ωk+1v

′
k+1

AuIDR
k+1 = Au′k+1βk+1 + ωk+1Av

′
k+1

= s′k+1βk+1 + ωk+1Av
′
k+1

= rk+1 − v′k+1 + ωk+1Av
′
k+1

= (I − ωk+1A)vk+1 − (I − ωk+1A)v′k+1

= (I − ωk+1A)(vk+1 − v′k+1).

The IDR(1) algorithm ensures that v′k+1 ⊥ r̃0 and v′k+1 ⊥ r̃0. This implies that vk+1 − v′k+1 ∈ r⊥0 ,
while on the other hand we have

v′k+1 − vk+1 = rk+1 − s′k+1βk+1 − vk+1

= vk+1 − ωk+1Avk+1 − (skαk+1 + ωk+1Avk+1)βk+1 − vk+1

= −ωk+1Avk+1 −Aukαk+1βk+1 − ωk+1Avk+1βk+1.

This implies that v′k+1 − vk+1 ∈ span(Avk+1, Auk) ∩ r̃⊥0 .
A similar statement holds for Bi-CGstab. We find that

AuBi-CGstab
k+1 = (I − ωk+1A)Au′k+1

= (I − ωk+1A)(Avk+1 −Aukβk).

The Bi-CGstab algorithm ensures that we have Avk+1 −Aukβk ∈ span(Avk+1, Auk) ∩ r̃⊥0 .
Now if vk+1 and uk in IDR and Bi-CGstab coincide, then v′k+1 − vk+1 in IDR is a multiple of

Avk+1 −Auk in Bi-CGstab.11

So, if ωk+1 is chosen in the same fashion we find that AuBi-CGstab
k+1 is a multiple of AuIDR

k+1. By
construction we then have that vk+2 is the same in IDR and Bi-CGstab. Using an induction
argument one now finds that IDR and Bi-CGstab produce the same vectors rk, vk while the vectors
uk are co-linear.

We summarize with the following corollary.

Corollary 2. If IDR(1) and Bi-CGstab use the same selection procedure for ω and they have the
same initial vectors u, v then Bi-CGstab and IDR(1) coincide (in exact arithmetic).

7. Preconditioning

A (left-) preconditioner P of a matrix A is a matrix such that P−1A has a smaller condition
number than A. This condition number plays a role in numerical stability and convergence rate.
Instead of solving Ax = b, we premultiply by P−1 and solve the (left-)preconditioned system

P−1Ax = P−1b.

This preconditioner should satisfy:

• Convergence should be faster for the preconditioned system. Normally, this means that P
is constructed as an “easily invertible” approximation to A;
• Operations with P−1 should be cheap to perform;
• P should be (relatively) easy to construct.

11The space span(Avk+1, Auk)∩ r̃0 is one-dimensional if Avk+1 or Aukis not perpendicular to r̃0. This is the case,
as Avk+1 ⊥ r̃0 implies a breakdown of both algorithms.

16

These matrices P can also form right-preconditioned systems

AP−1y = b, x = P−1y

or central preconditioned systems

P = LU, L−1AU−1y = L−1b, x = U−1y.

As one can see, left preconditioning does not change the solution of the system, and is therefore
easy to compute. Some methods (such as CG) rely on symmetry, and for these systems, the central
preconditioning (given L = U∗) is more natural. An advantage of right preconditioning is that it
does not affect the residual norm.

In Section 9 we will gather numerical results using the ILU(0) (incomplete LU with zero fill-in)
preconditioner. It is constructed by making a standard LU-decomposition A = LU . However,
during the process, some nonzero entries in the factors are discarded. This leads to P = L′U ′ with
L′ and U ′ the incomplete L- and U -factors. We will discard entries based on the sparsity pattern
of A: a nonzero is only kept if it corresponds to a nonzero entry in A. More details can be found
in the literature, e.g., [Sle, Lec. 10B].

8. IDR implementation

The IDR(s) implementation takes ideas from [PS08] and [GLS10]. The former source suggests
doing s steps of LMR to create an initial matrix U and S. The latter suggests setting

U = orth(
[
r0 · · · As−1r0

]
), S = AU.

Another source [Kis11, §3.3] suggests a few different options:

• Set U = R̃, then solve S = AU ;

• Set U = R̃, solve S = AU , then set R̃ = S.

These options yield valid IDR methods, but they seem like an odd choice. Suddenly your residuals
rk will not be in the Krylov space Kk+1(A, r0) anymore, but rather some iteratively expanded space
initialized by columns of U .12 We chose not to pursue these options.

We compared the different options, but there were minor differences in convergence. For our
implementation we chose to use the LMR approach, this choice was arbitary. With this construction
of U , we implemented both Algorithm 5 and Algorithm 6 in Matlab (using the ω selection described
in §5.4). Also, for comparing Bi-CGstab and IDR we implemented the explicit IDR(1) algorithm
given in Algorithm 8. The Matlab code is given in the appendix.

8.1. Preconditioned IDR. In §7 we introduced the principle of a preconditioner. The precon-
ditioner we will consider (ILU(0)) is of the form P = P1P2, where we do not explicitely calculate
P . We implement the left preconditioner by taking the right hand side P−1b and replacing the
matrix-vector product Av with P−1Av. Here we split the calculating of y = P−1u in two steps.
First we solve P1ŷ = u for ŷ and then we find the solution y by solving P2y = ŷ. As this is a left
preconditioner we do not have to edit the solution afterwards. [Sle, Lec. 10 Sl. 8]

12Visual proof for this claim can be found in [Kis11, Fig. 5]. The residual vector for IDR(8) started with U = R̃,
S = AU dips under the solution vector of GMRES for k between 50 and 100. This is not possible if rk+1 ∈ Kk(A, r0),
as GMRES finds the optimal residual in this Krylov space. Hence, this method finds residuals outside our Krylov
space.

17

Matrix # rows Pattern sym Value sym Spectrum κ2(A)
PDE 729 100% 44% τ = 4.3 · 100 2.4 · 104

STEAM2 600 100% 19% τ = 0 (real) 3.8 · 106

diag(1 : 200) 200 100% 100% τ = 0 (real) 2.0 · 102

SHERMAN4 1104 100% 0% τ = 0 (real) 2.2 · 102

SHERMAN5 3312 74% 15% τ = 4.0 · 10−4 1.9 · 105

ADD20 2395 100% 53% τ = 1.0 · 10−1 1.2 · 104

Table 1. Some quantitative information on the matrices used. Sparsity pattern
symmetry and numerical value symmetry measure how symmetric the matrix is.

We define τ := max
λ∈Λ(A)

(
Im(λ)
Re(λ)

)
.

9. Numerical Results

In this section, we will look at a Matlab implementation of IDR(s) compared to a number of
algorithms. This comparison will be done based on the amount of matrix-vector products (MV’s)
needed to converge, rather than computation time: we are comparing many different implemen-
tations from many different sources. Timing depends on skill of the programmer (among others).
We simply cannot verify that each implementation is “optimal”. Therefore, the amount of MV’s
needed is a good measure reliant on mathematics rather than implementation. Nevertheless, in §10
we will briefly discuss some computation time comparisons.

Our benchmark for this will be GMRES discussed in §2.1, as this produces the residual with
minimal norm in each Krylov space. In other words, one cannot beat GMRES using a Krylov
subspace solver in terms of MV’s needed to converge.13 Our comparison will include:

(1) The default Matlab implementation of GMRES, Bi-CG (§3.1), Bi-CGstab (§4.1), Bi-CGstab(`)
(§4.2);

(2) Our own implementation of IDR(s) and IDR for the explicit case with s = 1 as discussed
in §8. From here on we will indicate the IDR(1) Algorithm 8 by IDR.

As Bi-CG produces a residual every second matrix-vector multiplication, we doubled its residual
vector by repeating each value.

We will use various systems; see Table 1. We included the sparsity pattern symmetry and
numerical value symmetry to measure the symmetry of the matrix. Large τ denotes a large relative
imaginary component of the Eigenvalues. We know that Bi-CGstab and IDR perform badly on
matrices with large τ .[SF93, p. 15]

In every case, we will use a relative tolerance of 10−8 and where possible, initialize

R̃ = orth([r, randn(n, s− 1)])

with a seed of zero, as suggested by [PS08]. Note that this choice allows us to directly compare
IDR, Bi-CGstab, IDR(s = 1) and Bi-CGstab(` = 1), as these are equivalent when one chooses
r̃ = r: see Corollary 2.

The test-matrices proposed in the original assignment all perform reasonably well, with a few
exceptions. We found that when IDR(s) fails, it often has to do with a bad conditioning of the

13Please note however that GMRES is far from optimal in the computation time sense: it relies on long recurrences,
so the cost of inner products is dominant in the long run. Other methods are crafted to use short recurrences, providing
a method that scales better.

18

s Algorithm 5 Algorithm 6 van Gijzen
1 4374 (5.7× 10−09) 5368 (8.8× 10−09) 3838 (8.7× 10−09)
2 2809 (8.6× 10−09) 2621 (8.2× 10−09) 2395 (7.9× 10−09)
3 3166 (6× 10−09) 2863 (3.5× 10−09) 2386 (7.3× 10−09)
4 2603 (7.3× 10−09) 2760 (8.2× 10−09) 1928 (8.1× 10−09)
8 2437 (8.8× 10−09) 2703 (9.1× 10−09) 1687 (9.1× 10−09)

16 2777 (9× 10−09) 3178 (7.3× 10−09) 1477 (8× 10−09)

Figure 1. The matrix is SHERMAN5 with b = A~1. This table shows the amount
of MV’s needed and relative residual norm of the approximate solution for different
values of s, comparing three algorithms.

matrix R̃∗S so that the ~γ vector is inaccurate.14 When Bi-CGstab(`) fails, it has to do with very
slow convergence, warning us that the input tolerance might not be achieved. We chose to denote
errors like these in the computation with an asterisk (∗) in the figures ahead.

9.1. IDR(s) comparison. We start off by comparing the two different implementations of IDR(s)
given in §8. We will complement this comparison with the (non-equivalent) implementation found
in [vG] (cf. §5.4). The two main differences are (1) choice of ω and (2) the orthogonalisation of the

matrices involved. Our system of choice is SHERMAN5 with right-hand side b = A~1. Later on we
will see this system again with a different right-hand side.

See Figure 1. The algorithm of van Gijzen converges quicker than our implementations in all
cases. We attribute this to the superior ω-strategy. Inspection showed that for large values of s,
the matrix R∗S is ill-conditioned (as can be expected) in both our implementations, with the effect
that s = 16 actually takes more iterations than s = 8. Van Gijzen has no such problem.

Opposed to what [PS08, §4.3] states, we see that Algorithm 6 converges faster than Algorithm 5
in most cases. We therefore decided to use Algorithm 6 as implementation of IDR(s) for the
comparisons in this section.

9.2. A real-life example. We will look at an instructional example taken from [vG, §3.1] that
(albeit in a slightly different form) appears in [Kis11, §3.4.3] and [PS08, §6.3]. It is an example
for which Bi-CGstab does not work well, due to the strong nonsymmetry of the system matrix.
Specifically, the problem is caused by the fact that the matrix has Eigenvalues with large imaginary
parts: see the right of Figure 3 and Table 1 – the matrix PDE has τ = 4.3. Recall that Bi-CGstab
uses the LMR method to stabilize the residual. It does not work well for this type of problem
because the LMR steps produce a polynomial qk that is a product of linear factors. Therefore, qk
has real roots, and hence it is unsuited as a residual minimizing polynomial as this should have
roots close to the Eigenvalues.

The test problem is the finite difference discretization of the following convection-diffusion equa-
tion on the unit cube, with homogenous Dirichlet boundary conditions:

−ε∆u+ ~β · ∇u− ru = F, u(x, y, z) := x(1− x)y(1− y)z(1− z).
We used a grid size of h = 0.1 (yielding a system with 729 unknowns). The other parameters were

left unchanged: the diffusion parameter ε := 0.02, convection vector ~β := (0, 1, 2)/
√

5 and reaction
term r = 6. See Figure 2. We see the convergence for IDR(s) and Bi-CGstab(`) for different values,

14This can be solved by orthogonalizing the matrices involved in IDR(s): see §5.5.

19

Method MV ‖b−Ax‖/‖b‖
GMRES 123 8.8× 10−09

Bi-CG 314 8.6× 10−09

IDR stagnate
IDR(s = 1) stagnate
IDR(s = 2) 418 6.5× 10−09

IDR(s = 4) 311 9.9× 10−09

IDR(s = 8) 222 8.7× 10−09

Bi-CGstab stagnate
Bi-CGstab(` = 1) stagnate
Bi-CGstab(` = 2) 246 7.2× 10−09

Bi-CGstab(` = 4) 226 9.2× 10−09

Bi-CGstab(` = 8) 221* 1.1× 10−08

Figure 2. Convergence of different methods on the finite difference discretization
of a convection-diffusion PDE. The x-axis in the image represents the amount of
MV’s executed with the corresponding relative residual norm on the y-axis. Note
the stagnation for all methods mathematically equivalent to IDR.

Figure 3. Again, left shows the convergence of different Bi-CGstab methods on
this PDE matrix. Right shows the spectrum of this matrix: note that the relative
imaginary part is large (τ = 4.3).

and see (in the left pane of Figures 2 and 3) stagnation of all methods mathematically equivalent
to Bi-CGstab for the reasons above. As second-degree polynomials can have complex roots, the
fact that Bi-CGstab(`) for ` ≥ 2 does not stagnate is no surprise, nor is the fact that Bi-CGstab(`)
performs better than IDR(s).

Note that the convergence of Bi-CG is quite good; this method does not rely on LMR polynomials.

20

Method MV ‖b−Ax‖/‖b‖
GMRES 123 8.8× 10−09

Bi-CG 314 8.6× 10−09

IDR(s = 1) 379 7.6× 10−09

IDR(s = 2) 213 7.5× 10−09

IDR(s = 4) 185 8.3× 10−09

IDR(s = 8) 170 9.9× 10−09

Figure 4. (cf. Figure 2). The stagnation is gone if we use a complex random matrix

R̃ instead of a real one.

Beside increasing s or `, there are other ways to improve performance. Recall that IDR(1)
stagnates because the LMR polynomial is unable to approximate the Eigenvalues well, as ω ∈ R.

If we take R̃ to be a complex matrix rather than real, we find that ~γ is a complex vector so that ω
becomes a complex value, solving the problem. The results, shown in Figure 4, are quite interesting.
Suddenly, IDR(s = 2) converges quicker than any Bi-CGstab(`) method tested.

Do note however that computations are now done on complex values rather than reals, increasing
the computational cost.

9.3. IDR(1) comparison. As we know from the theory of this paper, we have multiple methods
that are mathematically equivalent, namely

Bi-CGstab ⇐⇒ Bi-CGstab(` = 1) ⇐⇒ IDR(s = 1) ⇐⇒ IDR.

We decided to compare these using the matrix STEAM2 provided by the MatrixMarket. STEAM2
models a 3D oil reservoir. See Table 1. We chose b = A~1 to be the right hand side, so we know the
exact solution.

See Figure 5. We immediately see that, while not exactly the same, the convergence pattern
for these four methods is visibly equivalent. We also see that they perform quite badly; up to 3.8
times the optimal amount of MV’s needed. This can (in part) be explained by the high condition
number. This matrix also benefits a lot from using higher-dimensional shadow space; s = 8 only
requires 1.2 times the optimal.

9.4. Bi-CG comparison. We took our matrix A to be the very simple diag(1 : 200). See Table 1;
this matrix is very well-conditioned. Using preconditioning on this system solves it in one step.

The result is Figure 6, showing beautifully how GMRES produces the best residuals, and that
each enlargement of ` produces better results than the previous. It is around ` = 8 that the
optimum seems to have been reached; we are very close to the optimal MV count.

9.5. IDR(s) comparison. We took the SHERMAN4 matrix from the Matrix Market. It again

models an oil reservoir. See Table 1. We chose b = A~1 to be compliant with results from [GLS10].

21

Method MV ‖b−Ax‖/‖b‖
GMRES 78 8.2× 10−09

Bi-CG 156 8.6× 10−09

IDR 294 3.5× 10−09

IDR(s = 1) 274 9.8× 10−09

IDR(s = 2) 141 9.5× 10−09

IDR(s = 4) 170 9.9× 10−09

IDR(s = 8) 96 4.8× 10−09

Bi-CGstab 229 2.5× 10−09

Bi-CGstab(` = 1) 251 9.6× 10−09

Bi-CGstab(` = 2) 196 7.5× 10−09

Bi-CGstab(` = 4) 158* 6.1× 10−08

Bi-CGstab(` = 8) 162 1.3× 10−09

Figure 5. A comparison of different methods mathematically equivalent to Bi-
CGstab, tested on the matrix STEAM2 from the Matrix Market.

Method MV ‖b−Ax‖/‖b‖
GMRES 78 8× 10−09

Bi-CG 158 7× 10−09

IDR 106 8.5× 10−09

IDR(s = 1) 106 8.5× 10−09

IDR(s = 2) 97 5.9× 10−09

IDR(s = 4) 90 7.2× 10−09

IDR(s = 8) 88 3× 10−09

Bi-CGstab 121 5.8× 10−09

Bi-CGstab(` = 1) 120 4.3× 10−09

Bi-CGstab(` = 2) 118 6.8× 10−09

Bi-CGstab(` = 4) 107 8.8× 10−09

Bi-CGstab(` = 8) 100 1× 10−08

Figure 6. A comparison of different Bi-CG(-like) methods, tested on the matrix
diag(1 : 200).

This matrix is very well conditioned with a real spectrum, so we can expect good convergence for
all methods (cf. §9.2).

See Figure 7. We see that larger s creates faster convergence (which was to be expected given
the theory). We see that IDR(s) indeed works well for this matrix: the amount of MV’s needed by
IDR(s) is 1.6 times the optimal amount. For s = 8, this is a factor 1.2. Comparing results with
[GLS10, Tbl. 1] shows that results are very similar. We also see that Bi-CGstab(`) benefits from
increasing `, although less so.

9.6. Preconditioning comparison. We will look at the SHERMAN5 matrix (cf. Table 1),
which produces results with very slow convergence, even for large values of ` and s. More testing

22

Method MV ‖b−Ax‖/‖b‖
GMRES 120 9.8× 10−09

Bi-CG 272 9.1× 10−09

IDR 198 4× 10−09

IDR(s = 1) 194 3.2× 10−09

IDR(s = 2) 162 5.7× 10−09

IDR(s = 4) 145 7.1× 10−09

IDR(s = 8) 140 6.6× 10−09

Bi-CGstab 201 8.8× 10−09

Bi-CGstab(` = 1) 199 7.9× 10−09

Bi-CGstab(` = 2) 187* 1.1× 10−08

Bi-CGstab(` = 4) 183* 1× 10−08

Bi-CGstab(` = 8) 177 8.2× 10−09

Figure 7. A comparison of IDR(s) for different s, tested on the matrix SHER-
MAN4 from the Matrix Market.

yielded that even using smarter algorithms (like orthogonalizing the matrices, §5.5 or using another
strategy for ω, §5.4) does not affect the convergence very much.

By Theorem 2, (1 + 1/s)3312 MV’s should be enough for the methods to converge. While the
convergence is very slow – see Figure 8 – IDR(s) for s > 1 does manage to complete ‘in time’. The
exact reason for this very slow convergence is unclear: the matrix isn’t ill-conditioned. We do see

however that the conditioning of the matrix R̃∗S used in finding ~γ is very bad with a reciprocal
condition number of 10−16.

Figure 9 shows the convergence in the case where an ILU(0) preconditioner was used. Note the
incredible difference. Looking at the condition number κ2(P−1A) = 2.8 · 103 does not give much
insight. Even looking at the spectrum (τ(P−1A) = 7.4 · 10−2) does not tell us much.

We can neither explain the immense computation time needed without preconditioning, nor the
immense speedup from using a preconditioner.

9.7. ADD20. To complete our test case, we chose another MatrixMarket matrix: ADD20 – see
Table 1. This matrix was also used in [GLS10, Tbl. 2]. See Figure 10 for a comparison of the
convergence for regular and ILU(0)-preconditioned methods. We can see that IDR(s) performs
better than Bi-CGstab(`) in the non-preconditioned version, but Bi-CGstab(`) seems to benefit
more from preconditioning than IDR. The (non-preconditioned) results from [GLS10, Tbl. 2] are
(thankfully) comparable.

10. Timing results

As noted before, we used the MV to compare the performance of different methods. In reality,
the methods also spent time computing inner products and vector updates. GMRES uses long
recurrences to update the residuals so iterations get slower. As IDR(s) and Bi-CGSTAB use short
recurrence relations, the time spent in each iteration is more or less the same. We timed the
iterations of different methods to get an idea of the computation time per iteration. We did this
by editing Matlab’s GMRES and Bi-CGSTAB(`) implementation to return a vector with the time
elasped between two consecutive MV’s. Similarly, we edited our IDR(s) implementation.

23

Method MV ‖b−Ax‖/‖b‖
GMRES 986 9.7× 10−09

Bi-CG 3928 7.7× 10−09

IDR 7404 9.1× 10−09

IDR(s = 1) 10461 5.3× 10−09

IDR(s = 2) 3919 9.1× 10−09

IDR(s = 4) 3002 1× 10−08

IDR(s = 8) 3098* 7.8× 10−09

Bi-CGstab 1328* 0.47
Bi-CGstab(` = 1) 6452 4.2× 10−09

Bi-CGstab(` = 2) 4294 1× 10−08

Bi-CGstab(` = 4) 3410 5.1× 10−09

Bi-CGstab(` = 8) 3149* 1× 10−08

Figure 8. A comparison of different methods, tested on the matrix SHERMAN5
(n = 3312) from the Matrix Market.

Method MV ‖b−Ax‖/‖b‖
GMRES 34 2.1× 10−09

Bi-CG 74 5.5× 10−09

IDR 52 6× 10−10

IDR(s = 1) 51 1.6× 10−09

IDR(s = 2) 44 5.8× 10−10

IDR(s = 4) 40 4.4× 10−09

IDR(s = 8) 40 3.7× 10−09

Bi-CGstab 49 4× 10−09

Bi-CGstab(` = 1) 49 4× 10−09

Bi-CGstab(` = 2) 49 7.4× 10−09

Bi-CGstab(` = 4) 49 2.7× 10−09

Bi-CGstab(` = 8) 49* 3.2× 10−08

Figure 9. Preconditioned convergence for the same matrix as Figure 8. Notice the
immense difference in convergence speed.

An example of the time per iteration is given in Figure 11 (we used the ADD20 matrix). We
clearly see behaviour one would expect. For GMRES the time per MV (or per iteration) increases
linearly. For IDR(16) the time spent between the first 16 MV’s is small, this corresponds to the
initialization stage. In this stage we construct the matrices U and S, in 16 iterations. Then upon
entering the main loop, we see a spike in computation time every 17th MV. This corresponds to
the case where our residuals get lifted to the next space; the new ω must be calculated. For Bi-
CGSTAB(8) the graph clearly shows 8-periodic beheaviour. The first 8 MV’s correspond to the
Bi-CG loop, while the next 8 MV’s correspond to finding the stabilizing polynomial of degree 8.

24

Method MV ‖b−Ax‖/‖b‖
GMRES 295 1× 10−08

Bi-CG 640 9.4× 10−09

IDR 826 7.2× 10−09

IDR(s = 1) 772 9.9× 10−09

IDR(s = 2) 550 8.9× 10−09

IDR(s = 4) 542 4.3× 10−09

IDR(s = 8) 380 8.7× 10−09

Bi-CGstab 750 9.8× 10−09

Bi-CGstab(` = 1) 815 8.7× 10−09

Bi-CGstab(` = 2) 738 7.4× 10−09

Bi-CGstab(` = 4) 587 9.9× 10−09

Bi-CGstab(` = 8) 567 9.3× 10−09

Method MV ‖b−Ax‖/‖b‖
GMRES 138 6.3× 10−08

Bi-CG 276 9.7× 10−09

IDR 240 7.1× 10−08

IDR(s = 1) 247 4.7× 10−08

IDR(s = 2) 240 6.2× 10−08

IDR(s = 4) 215 5.7× 10−08

IDR(s = 8) 182 3.1× 10−08

Bi-CGstab 273 9.1× 10−09

Bi-CGstab(` = 1) 260 1× 10−08

Bi-CGstab(` = 2) 200 9.6× 10−09

Bi-CGstab(` = 4) 168 9.9× 10−09

Bi-CGstab(` = 8) 179 9.6× 10−09

Figure 10. Convergence for the matrix ADD20 from the Matrix Market. Left:
non-preconditioned convergence table; right: preconditioned convergence table.

Figure 11. Timing results of three different (unpreconditioned) methods for the
ADD20 matrix with the corresponding Matrix Market right hand side. On the x-
axis we have the MV number. The y-axis indicates the time spent between two
consecutive MV’s.

The graphs corresponding to the preconditioned timings look more or less the same, as one would
expect.

In Figure 12, a comparison of the total computation time is given. The real power of Bi-CGSTAB
and IDR is clearly visible in this data. Especially in the unpreconditioned version we see that both
methods outperform GMRES in computation time by a factor ≈ 10. Another interesting thing is
the comparison of Bi-CGSTAB(1) and IDR(1). As these methods are mathematically equivalent
one should expect their executing time to be more or less the same. From the Figure we see
however that Bi-CGSTAB(1) is almost twice as slow in execution time. This (most likely) due to
the fact that the implementation of Bi-CGSTAB(`) runs all kinds of different ‘checks’ each iteration
whereas our implementation of IDR(s) has no such checks. This is exactly the reason we used MV
to compare the performance of different methods.

25

Method MV Time in s
GMRES 285 2.1353
IDR(s = 1) 708 0.14085
IDR(s = 2) 534 0.1237
IDR(s = 3) 579 0.14322
IDR(s = 4) 550 0.1428
IDR(s = 8) 413 0.13184
IDR(s = 16) 393 0.21767
Bi-CGstab(` = 1) 772 0.24351
Bi-CGstab(` = 2) 699 0.22958
Bi-CGstab(` = 3) 729 0.24744
Bi-CGstab(` = 4) 612 0.21634
Bi-CGstab(` = 8) 480 0.19322

Method MV Time in s
GMRES 126 0.57601
IDR(s = 1) 229 0.074272
IDR(s = 2) 192 0.069943
IDR(s = 3) 249 0.097691
IDR(s = 4) 159 0.062567
IDR(s = 8) 159 0.069901
IDR(s = 16) 145 0.088876
Bi-CGstab(` = 1) 240 0.13531
Bi-CGstab(` = 2) 171 0.10136
Bi-CGstab(` = 3) 198 0.11736
Bi-CGstab(` = 4) 196 0.12409
Bi-CGstab(` = 8) 187 0.13054

Figure 12. Timing results for the ADD20 matrix with the corresponding right
hand side. On the left we have the non-preconditioned verison, on the right wave
have the ILU(0) preconditioned system.

11. Conclusion

In this paper, Iterative solvers were discussed. We started at GMRES in §2.1, before asserting
that if A is Hermitian, GMRES is mathematically equivalent to CG. We discussed CG in §3 and
its short-recurrence, non-Hermitian variant Bi-CG in §3.1. From this, we introduced Bi-CGstab in
§4.1 and generalized this to §4.2.

We then proposed the idea of finding residuals not in some (growing) sequence of Krylov spaces,
but rather some sequence of shrinking subspaces in Theorem 1. This Induced Dimension Reduction
method or IDR(s) is the shining star of this paper. We saw that IDR(1) is in fact mathematically
equivalent to Bi-CGstab in §6, providing us with the connection between IDR(s) and the previous.

We then used GMRES, Bi-CG, Bi-CGstab, Bi-CGstab(`), IDR and IDR(s) to provide the reader
with numerical results, some of which containing comparisons with articles of other authors. We
saw that convergence improves when using higher s and `. From these results, we can conclude that
the quote at the very top of this paper holds: the IDR(s) algorithm indeed seems to outperform
the state-of-the-art Bi-CG-type methods.

From §9.1, we can conclude that orthogonalisation of the matrices and using the ω-strategy of
[vGS11] yields improved performance.

11.1. Discussion. One must admit that while it is interesting to compare IDR(s) with Bi-
CGstab(`), they are different methods entirely. The former increases the size of the shadow space
while retaining the polynomial degree, while the former uses a one-dimensional shadow space with
a polynomial of degree `. In [GLS10], a method named Bi-CGSTAB(s) is suggested, which is
mathematically equivalent to IDR(s). To not clutter our minds too much, we decided to leave this
for another time.

Each article, paper, lecture and other source that we used has a slightly (mathematically equiv-
alent) definition of whatever method they discuss. Some sources for instance find rk+1, and then
uk+1 while others find uk and use this to find rk+1. This makes translating algorithms very arduous.
Moreover, our main two sources for the IDR(s) algorithm – [GLS10] and [PS08] – have opposing
signs for some of the involved quantities. This again made translation troublesome.

26

The last point of discussion is the choice of matrices. The original assignment states that we
should use multiple self-defined systems and a selection of found matrices. We found it very difficult
to generate matrices with the desired properties, and chose to use existing examples from other
sources as inspiration for our own numerical results. Using examples from more knowledgeable
people instead of our own allowed us to understand much more of the underlying mechanics behind
certain convergence behaviours.

References

[GHG13] Charles F. Van Loan Gene H. Golub. Matrix Computations:: 4th Edition. The Johns Hopkins University
Press, 2013.

[GLS10] Martin B. van Gijzen Gerard L.G. Sleijpen, Peter Sonneveld. Bi-CGSTAB as an induced dimension reduc-
tion method. Applied Numerical Mathematics, 60, 2010.

[Kis11] Goushani Kisoensingh. IDR(s). Master’s thesis, University of Utrecht, 2011.
[LNT97] David Bau Lloyd N. Trefethen. Numerical Linear Algebra. Society for Industrial and Applied Mathematics,

1997.
[PS08] Martin B. van Gijzen Peter Sonneveld. IDR(s): A family of simple and fast algorithms for solving large

nonsymmetric systems of linear equations. Journal for Scientific Computing, 30(2):1035–1062, 2008.
[SF93] Gerard L.G. Sleijpen and Diederik R. Fokkema. BiCGstab(`) for linear equations involving unsymmetric

matrices with complex spectrum. Electronic Transactions on Numerical Analysis, 1(11):2000, 1993.
[Sle] Gerard L.G. Sleijpen. Numerical Linear Algebra — Course notes. http://www.staff.science.uu.nl/

~sleij101/Opgaven/NumLinAlg.
[SS86] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm for solving nonsym-

metric linear systems. SIAM Journal on scientific and statistical computing, 7(3):856–869, 1986.
[TFC97] Henk van der Vorst Tony F. Chan, Lisette de Pillis. Transpose-free formulations of Lanczos-type methods

for nonsymmetric linear systems, 1997.
[VdV92] Henk A Van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution of

nonsymmetric linear systems. SIAM Journal on scientific and Statistical Computing, 13(2):631–644, 1992.
[VF84] Thomas A. Manteuffel Vance Faber. Necessary and sufficient conditions for the existence of a conjugate

gradient method. SIAM J. Numer. Anal., 1984.
[vG] Martin van Gijzen. The Induced Dimension Reduction method. http://ta.twi.tudelft.nl/nw/users/

gijzen/IDR.html.
[vGS11] Martin B. van Gijzen and Peter Sonneveld. An Elegant IDR(s) Variant that Efficiently Exploits Bi-

orthogonality Properties. ACM Transactions on Mathematical Software, 2011.
[WS80] P. Wesseling and Peter Sonneveld. Numerical experiments with a multiple grid and a preconditioned Lanczos

type method. J. Comput. Phys., 1980.

27

Appendix A. Matlab Algorithms

Listing 1. IDR(s) Algorithm 5
1 func t i on [x , k , resvec , t imevec] = id r s e i g en imp (A, b , s , to l , maxit , R, M1, M2 , x 0)
2 t i c ;
3 [n , ˜] = s i z e (b) ;
4 i f narg in < 5 ,
5 maxit = n ;
6 end
7 i f narg in < 6 ,
8 randn (' s t a t e ' , 0) ;
9 R = randn (n , s) ;

10 R = orth (R) ;
11 end
12
13 i f narg in < 7 | | isempty (M1)
14 precM1 = 0 ;
15 e l s e
16 precM1 = 1 ;
17 b = M1\b ;
18 end
19 i f narg in < 8 | | isempty (M2)
20 precM2 = 0 ;
21 e l s e
22 precM2 = 1 ;
23 b = M2\b ;
24 end
25
26 i f narg in < 9 ,
27 x = ze ro s (n , 1) ;
28 r = b ;
29 e l s e
30 x = x 0 ;
31 r = b − A*x ;
32 end
33 nb = norm(b) ;
34 r e svec = ze ro s (maxit+1 ,1) ;
35 timevec = ze ro s (maxit+1 ,1) ;
36 r e svec (1) = nb ;
37 timevec (1) = toc ;
38
39 U = ze ro s (n , s) ;
40 S = ze ro s (n , s) ;
41 f o r k = 0 : (s−1) ,
42 v = A* r ;
43 i f precM1
44 v = M1\v ;
45 end
46 i f precM2
47 v = M2\v ;
48 end
49 omega = v ' * r /(v ' * v) ;
50 U(: , k+1) = −omega* r ;
51 S (: , k+1) = − omega*v ;
52 r = r + S (: , k+1) ;
53 r e svec (k+2) = norm(r) ;
54 timevec (k+2) = toc ;
55 x = x − U(: , k+1) ;
56 end
57
58 i = 1 ;
59 j = 0 ;
60 omega = 0 ;
61 k = s ;
62 whi le k <= maxit && (re svec (k) / r e svec (1) > t o l) ,
63 gamma = (R' *S) \(R' * r) ;
64 v = r − S*gamma;
65 i f j == 0 ,
66 c = A*v ;
67 i f precM1
68 c = M1\c ;
69 end
70 i f precM2
71 c = M2\c ;

28

72 end
73 omega = c ' * v/(c ' * c) ;
74 U(: , i) = −U*gamma − omega*v ;
75 S (: , i) = −S*gamma − omega*c ;
76 e l s e
77 U(: , i) = −U*gamma − omega*v ;
78 S (: , i) = A*U(: , i) ;
79 i f precM1
80 S (: , i) = M1\S (: , i) ;
81 end
82 i f precM2
83 S (: , i) = M2\S (: , i) ;
84 end
85 end
86 x = x − U(: , i) ;
87 r = r + S (: , i) ;
88 r e svec (k+1) = norm(r) ;
89 timevec (k+1) = toc ;
90 i = i +1;
91 i f i > s ,
92 i = 1 ;
93 end
94 j = j +1;
95 i f j > s ,
96 j = 0 ;
97 end
98 k = k + 1 ;
99 end

100 i f (k <= maxit)
101 r e svec = re svec (1 : k) ;
102 timevec = timevec (1 : k) ;
103 end
104 end

Listing 2. IDR(s) Algorithm 6
1 func t i on [x , k , resvec , t imevec] = i d r s e i g e n (A, b , s , to l , maxit , R, M1, M2 , x 0)
2 t i c ;
3 [n , ˜] = s i z e (b) ;
4 i f narg in < 5 ,
5 maxit = n ;
6 end
7 i f narg in < 6 ,
8 randn (' s t a t e ' , 0) ;
9 R = randn (n , s) ;

10 R = orth (R) ;
11 end
12
13 i f narg in < 7 | | isempty (M1)
14 precM1 = 0 ;
15 e l s e
16 precM1 = 1 ;
17 b = M1\b ;
18 end
19 i f narg in < 8 | | isempty (M2)
20 precM2 = 0 ;
21 e l s e
22 precM2 = 1 ;
23 b = M2\b ;
24 end
25
26 i f narg in < 9 ,
27 x = ze ro s (n , 1) ;
28 r = b ;
29 e l s e
30 x = x 0 ;
31 v = A*x ;
32 i f precM1
33 v = M1\v ;
34 end
35 i f precM2
36 v = M2\v ;
37 end
38 r = b − v ;
39 end

29

40 nb = norm(b) ;
41 r e svec = ze ro s (maxit+1 ,1) ;
42 timevec = ze ro s (maxit+1 ,1) ;
43 r e svec (1) = nb ;
44 timevec (1) = toc ;
45
46 U = ze ro s (n , s) ;
47 S = ze ro s (n , s) ;
48 f o r k = 0 : (s−1) ,
49 v = A* r ;
50 i f precM1
51 v = M1\v ;
52 end
53 i f precM2
54 v = M2\v ;
55 end
56 omega = v ' * r /(v ' * v) ;
57 U(: , k+1) = −omega* r ;
58 S (: , k+1) = − omega*v ;
59 r = r + S (: , k+1) ;
60 r e svec (k+2) = norm(r) ;
61 timevec (k+2) = toc ;
62 x = x − U(: , k+1) ;
63 end
64
65 i = 1 ;
66 j = 0 ;
67 omega = 0 ;
68 k = s ;
69 whi le k <= maxit && (re svec (k) / r e svec (1) > t o l) ,
70 gamma = (R' *S) \(R' * r) ;
71 v = r − S*gamma;
72 c = A*v ;
73 i f precM1
74 c = M1\c ;
75 end
76 i f precM2
77 c = M2\c ;
78 end
79 i f j == 0 ,
80 omega = c ' * v/(c ' * c) ;
81 end
82 U(: , i) = −U*gamma − omega*v ;
83 x = x − U(: , i) ;
84 r1 = v − omega*c ;
85 S (: , i) = r1 − r ;
86 r = r1 ;
87 r e svec (k+1) = norm(r) ;
88 timevec (k+1) = toc ;
89 i = i +1;
90 i f i > s ,
91 i = 1 ;
92 end
93 j = j +1;
94 i f j > s ,
95 j = 0 ;
96 end
97 k = k + 1 ;
98 end
99 i f (k <= maxit)

100 r e svec = re svec (1 : k) ;
101 timevec = timevec (1 : k) ;
102 end
103 end

Listing 3. IDR(1) Algorithm 8
1 func t i on [x , k , r e svec] = i d r e i g e n (A, b , to l , r t i l d e , M1, M2, x 0)
2 [n , ˜] = s i z e (A) ;
3 i f narg in < 4 ,
4 randn (' s t a t e ' , 0) ;
5 r t i l d e = randn (n , 1) ;
6 end
7 i f narg in < 5 | | isempty (M1)
8 precM1 = 0 ;

30

9 e l s e
10 precM1 = 1 ;
11 b = M1\b ;
12 end
13 i f narg in < 6 | | isempty (M2)
14 precM2 = 0 ;
15 e l s e
16 precM2 = 1 ;
17 b = M2\b ;
18 end
19 i f narg in < 7 ,
20 x = ze ro s (n , 1) ;
21 r = b ;
22 e l s e
23 x = x 0 ;
24 r = b − A*x ;
25 end
26 r e svec = [norm(r)] ;
27 u = r ;
28 c = A*u ;
29 i f precM1
30 c = M1\c ;
31 end
32 i f precM2
33 c = M2\c ;
34 end
35 k=0;
36 whi le norm(r) /norm(b) > to l ,
37 rho = r t i l d e ' * r ;
38 sigma = r t i l d e ' * c ;
39 alpha = rho/sigma ;
40 rprime = r − alpha *c ;
41 r e svec = [r e svec ; norm(rprime)] ;
42 xprime = x + alpha *u ;
43 s = A* rprime ;
44 i f precM1
45 s = M1\ s ;
46 end
47 i f precM2
48 s = M2\ s ;
49 end
50 omega = rprime ' * s /(s ' * s) ;
51 r = rprime − omega* s ;
52 r e svec = [r e svec ; norm(r)] ;
53 x = xprime + omega* rprime ;
54 mu = r t i l d e ' * s ;
55 beta = mu/sigma ;
56 cprime = s − beta *c ;
57 uprime = r − beta *u ;
58 l = A* cprime ;
59 i f precM1
60 l = M1\ l ;
61 end
62 i f precM2
63 l = M2\ l ;
64 end
65 c = cprime − omega* l ;
66 u = uprime − omega* cprime ;
67 k = k+1;
68 end
69 end

