
MSc Mathematics

Master Thesis

Two-dimensional hp-adaptive finite
elements in theory and practice

Author: Supervisor:
Jan Westerdiep prof. dr. R.P. Stevenson

Examination date:
June 27th, 2017

Korteweg-de Vries Institute for
Mathematics

Abstract

Finite element methods find best approximations to the solution of an (elliptic) PDE by piece-
wise polynomials of some fixed degree w.r.t. a partition of the domain into, say, triangles.
Adaptive finite elements produce a sequence of such approximations where each next approxi-
mation is constructed from the previous one by refining the partition there where the current
error turns out to be large. This error is estimated locally by an a posteriori error estimator.
Adaptive finite elements are the topic of an MSc. course taught at KdVI.

Adaptive hp-finite element methods go one step further, in the sense that not only the
partition is adapted to the unknown solution, but also the polynomial degree on the individual
triangles. They aim to achieve an exponential convergence rate in terms of the number of
degrees of freedom, equal to the rate of a best sequence of hp-partitions for this (unknown)
solution. Convergence theory of hp-finite elements is the center of current interest in the finite
element community.

Besides the difficulties associated with any adaptive method handling locally refined par-
titions, an implementation requires dealing with polynomials of an (a priorily) unbounded
degree whose bases moreover vary from triangle to triangle. The data structures involved in
this algorithm requires one to develop specialized computational methods, which we will cover
in depth.

Title: Two-dimensional hp-adaptive finite elements in theory and practice
Cover: A sample triangulation found by our implementation.

Deeper colors indicate higher local degree.
Author: Jan Westerdiep, jan.westerdiep@student.uva.nl, 10219242
Supervisor: prof. dr. R.P. Stevenson
Second Examiner: dr. J.H. Brandts
Examination date: June 27th, 2017

Korteweg-de Vries Institute for Mathematics
University of Amsterdam
Science Park 105-107, 1098 XG Amsterdam
http://kdvi.uva.nl

2

http://kdvi.uva.nl

Contents

Introduction 4

1. Theoretical foundation and h-adaptivity 6
1.1. Variational problems . 6
1.2. Finite elements . 10
1.3. A priori error estimation . 15
1.4. A posteriori error estimation . 17
1.5. Grid refinement . 22
1.6. h-AFEM . 26

2. Theory of hp-adaptivity 29
2.1. A framework for hp-adaptivity . 31
2.2. Near-best approximations . 32
2.3. The routine Reduce . 37
2.4. hp-AFEM . 43

3. Bases for the finite element space 48
3.1. Lagrange elements . 48
3.2. Hierarchical elements . 49
3.3. Local bases . 53
3.4. Examples of hierarchical elements . 57
3.5. Bernstein-Bézier elements . 63

4. Practical considerations 76
4.1. Computing the necessary quantities . 76
4.2. The error functional . 79
4.3. Interelement continuity . 85
4.4. Implementation . 86

5. Numerical results 90
5.1. Known solution . 91
5.2. L-shaped domain and first run of hp-AFEM . 92
5.3. Comparing hp-AFEM with other research . 98
5.4. Varying the algorithm parameters . 103

Conclusion 106

Appendix A. Near-best tree generation 108

Appendix B. Local-to-global mapping 115

Appendix C. Popular summary 116

Bibliography 116

3

Introduction

The Finite Element Method (FEM) is a numerical technique for finding approximate solutions
to (elliptic) partial differential equations, specifically boundary value problems. It uses a
subdivision of a whole problem domain into simpler parts, called finite elements. Analogous
to the idea that connecting many tiny straight lines can approximate a larger circle, FEM
encompasses methods for connecting many simple element equations over many subdomains
to approximate a more complex equation over a larger domain.

The classical finite element methods subdivide the problem domain into finite elements
(say triangles), and use continuous elementwise polynomials (of fixed degree) to find a first
approximation. In subsequent iterations, all elements are refined (e.g., for triangular elements,
we can connect the edge midpoints to find four smaller triangles) and the process is repeated
until the approximation is close enough to the exact solution, in that the norm of the difference
of these two is satisfactorily small.

We can choose not to refine every finite element, but only the ones we predict will benefit
most from refinement. This is called h-adaptive finite elements, as we adapt the method to
the problem at hand by letting the diameter (denoted by h) of each element differ. The case
of h-adaptivity has been studied thoroughly—we refer to the survey [37]—and an optimality
proof was found in 2007 [43], showing that the method finds “the best possible solution” given
a fixed number of refinements, or equivalently, degrees of freedom (DoFs).

We use elementwise contributions to solve a larger linear system that yields our desired
solution. In classical and h-adaptive finite element methods, the number of DoFs per element
(interpretable as the complexity of such a local contribution) is fixed. If we allow variation
of the polynomial degree (denoted by p) per element in addition to h-adaptive refinement,
we arrive at hp-adaptive finite elements. This creates more possibilities, as one can choose
to either refine an element, increase its polynomial degree, or do nothing. The result is that
better solutions can be expected given a fixed number of DoFs, but that the theory is also
more difficult.

The case of hp-adaptivity started gaining momentum in the eighties with the works of Gui
and Babuška [25, 26], but despite the interest, the field is much less developed than for the
h-version. While (heuristics-based) hp-adaptive finite element methods have existed for quite
some time, it was not until 2015 that Canuto et al. [15] proved the optimality of one such
methods, at least in one and two dimensions. Their article builds upon the ideas of Binev [9],
which we previously studied in [47].

The purpose of this work is to partly bridge the gap between theory and practice: Both
theoretical insights and implementation-specific details will be considered. Currently, most
hp-adaptive implementations used in the real world are built upon heuristics for the selection
between h-refinement and p-enrichment, rather than a rigorous foundation. We will examine a
slightly simplified version of the method by Canuto et al. in [15] to allow a focus on didactics
rather than on bookkeeping.

In Chapter 1, we will study the classic h-adaptive case. In the h-AFEM algorithm, a sequence
of triangulations is created, each a refinement of the previous. Under certain mild conditions,
the error norms of the finite element solutions produced by h-AFEM decay algebraically in the
number of DoFs:

error norm ∼ # DoF−s for the best s > 0.

4

The hp-adaptive hp-AFEM algorithm central to Chapter 2 creates a sequence of such finite
element triangulations by alternating two routines—Reduce and NearBest. The first routine
reduces the error norm of the approximate solution by constructing a refined triangulation
with more degrees of freedom, and the second increases the efficiency of the current solution
while sacrificing some accuracy. We can prove that, under mild conditions, the error norms of
these solutions decay with exponential rate:

error norm ∼ exp
(
−η(# DoF)τ

)
for some η, τ > 0.

Note the difference with the h-adaptive case: hp-adaptation is much better in terms of con-
vergence speed.

This alternation between the two routines means that our hp-AFEM produces a sawtooth
graph similar to Figure 0.0.1. A call to our Reduce routine brings the error down significantly
but increases the total number of DoFs; a classic (h-adaptive) finite element method started
from here would produce an error progression graph like the dotted line. The red line represents
a call to NearBest and decreases the number of DoFs at the expense of (some) accuracy.
Connecting all points corresponding to the solution after a call to NearBest yields the black
dashed line, and shows the promised exponential convergence rate.

Figure 0.0.1.: Example of a sawtooth graph
that our hp-AFEM algorithm could produce.
The green lines correspond to a grid refine-
ment though the Reduce routine; a dotted line
shows typical (algebraic) error progression of
an h-adaptive method. Red lines are calls to
NearBest. The black dashed line shows the (ex-
ponential) convergence of solutions after each
coarsening step.

After carefully studying the mathematical theory behind this hp-adaptive algorithm, we will
take a more practical look on things. In Chapter 3, we will investigate the properties of a
handful of bases for the degree-p polynomial space on each element. Of these, the hierarchical
basis—a basis that allows for easy p-enrichment by writing the degree-(p + 1) basis as an
adaptation of the basis on degree p—will be used to fully implement and experiment with
hp-AFEM.

Chapter 4 will then focus on the practical considerations that our implementation hinges
on. In it, we hope to cover every detail necessary for a successful implementation. We end the
chapter with an overview of the C++ library that was written as part of this work.

In Chapter 5, we experiment with the implementation. We look at the behaviour of the
algorithm in a few different scenarios, and conclude that it produces very high-quality trian-
gulations which exhibit exponential decay. We end the thesis with an outlook into the future.

5

1. Theoretical foundation and h-adaptivity

This chapter will serve as a self-contained summary of the theory necessary to understand
the rest of the thesis. We will start off with the standard variational formulation in §1.1,
and provide the reader with a systematic way of constructing an approximate finite element
solution to the variational problem in §1.2.

However, almost always, just finding a solution is not good enough. We want to know if this
numerical solution is a good approximation to the true solution, and possibly find out how to
make it better. We will explain why these concepts are both active fields of research by diving
into error estimation (in §1.3 and §1.4) and grid refinement—or h-refinement—in §1.5.

We will finish our overview in §1.6 by touching on the classical h-AFEM algorithm—refining
h adaptively on those elements where the error norm is indicated to be large—paving the way
to our true objective: covering hp-AFEM.

1.1. Variational problems

Let us start out with the pure basics.

Definition 1.1.1. Define N0 := N ∪ {0} to be the set of nonnegative integers. Then, for a
multi-index α ∈ Nd0, define |α| :=

∑
k αk. ♦

Definition 1.1.2. Given a real linear space V, a function a : V × V → R is bilinear iff both
v 7→ a(v, w) and w 7→ a(v, w) are linear. It is symmetric when a(v, w) = a(w, v) for all
v, w ∈ V . ♦

Definition 1.1.3. A bilinear form a(·, ·) on a normed linear space (V,‖·‖) is bounded iff there
is a C ∈ R with

|a(v, w)| ≤ C‖v‖‖w‖ (v, w ∈ V)

and coercive when there is an α > 0 with

a(v, v) ≥ α‖v‖2 (v ∈ V). ♦

Proposition 1.1.4 ([13, (2.5.3)]). Let (V, 〈·, ·〉) be a Hilbert space, and suppose a(·, ·) is a
symmetric blinear form that is continuous and coercive on V . Then (V, a(·, ·)) is a Hilbert
space, and its induced norm ‖v‖E :=

√
a(v, v) is equivalent to the norm

√
〈·, ·〉. We call ‖·‖E

the energy norm.

Definition 1.1.5. Let (V, 〈·, ·〉) be a Hilbert space. If a(·, ·) is a bounded and coercive bilinear
form on V , then the variational problem is stated as

Given F ∈ V ′, find u ∈ V s.t. a(u, v) = F (v) (v ∈ V). (1.1.6)

The Ritz-Galerkin approximation problem then is the following.

Given a closed linear subspace S ⊂ V,
find uS ∈ S s.t. a(uS , v) = F (v) (v ∈ S).

(1.1.7)

6

When u and uS solve these problems, a simple subtraction yields the fundamental Galerkin
orthogonality relation between u and uS :

a(u− uS , v) = 0 (v ∈ S). ♦

Three important questions arise:

1. Are there any interesting examples of variational problems? What is their relation to
solving differential equations?

2. When are these variational problems solvable? Are the solutions unique?

3. What can we say about the approximation error u− uS?

1.1.1. The model problem

We will begin by addressing the first question.
Let Ω ⊂ R2 be a polygonal domain in the plane, and define H1(Ω) to be the set of once

weakly-differentiable functions on Ω with square-integrable derivatives. Then H1(Ω) is an
inner product (even Hilbert) space with

〈v, w〉H1(Ω) :=
∑
|α|≤1

〈Dαv,Dαw〉L2(Ω),
(
α ∈ N2

0

)

and induced Sobolev norm‖v‖H1(Ω) := 〈v, v〉1/2
H1(Ω)

. This norm gives rise to theH1(Ω)-seminorm

|v|H1(Ω) :=

∑
|α|=1

‖Dαv‖2L2(Ω)

1/2

.

We will study the closed subspace

H1
0 (Ω) :=

{
v ∈ H1(Ω) : v|∂Ω = 0

}
⊂ H1(Ω)

of functions vanishing on the boundary of the domain—this can be formalized by viewing these
traces v|∂Ω as square-integrable functions on ∂Ω using the trace theorem, cf. [13, §1.6]. On
this space, the H1(Ω)-seminorm becomes a norm—the energy norm—that we will denote by
‖·‖H1

0 (Ω).

We equip the space H1
0 (Ω) with the inner product

〈v, w〉H1
0 (Ω) :=

∑
|α|=1

〈Dαv,Dαw〉L2(Ω) =

∫
Ω
∇v · ∇w,

(
α ∈ N2

0

)
.

Note that ‖·‖H1
0 (Ω) is the induced norm with respect to this inner product.

On the spaceH1
0 (Ω), the Poincaré inequality [13, (5.3.5)] allows us to estimate the L2(Ω)-norm

by its energy norm: There is a Cp = Cp(Ω) > 0 with

‖v‖L2(Ω) ≤ Cp‖v‖H1
0 (Ω)

(
v ∈ H1

0 (Ω)
)
. (1.1.8)

7

This equality ensures that on H1
0 (Ω), the H1(Ω)- and energy norm are equivalent, in that

‖v‖H1
0 (Ω) ≤‖v‖H1(Ω) ≤

√
1 + C2

p ‖v‖H1
0 (Ω) .

The mapping
a : H1

0 (Ω)×H1
0 (Ω) : (v, w) 7→ 〈v, w〉H1

0 (Ω)

is obviously bilinear. We will show its boundedness and coercivity.

Boundedness By Schwarz’s inequality, we see that a(·, ·) is bounded with C = 1:

|a(v, w)| ≤
∫

Ω

∣∣∣∣∣∣
∑
|α|=1

(Dαv)(Dαw)

∣∣∣∣∣∣
≤
∑
|α|=1

‖Dαv‖L2(Ω)‖D
αw‖L2(Ω)

≤
√∑
|α|=1

‖Dαv‖2L2(Ω)

√∑
|α|=1

‖Dαw‖2L2(Ω)

=‖v‖H1
0 (Ω)‖w‖H1

0 (Ω) .

Coercivity Its coercivity follows directly from the definition, with α = 1:

‖v‖2H1
0 (Ω) = 〈v, v〉H1

0 (Ω) = a(v, v) =⇒ a(v, v) ≥‖v‖2H1
0 (Ω) .

Define f ∈ L2(Ω) to be a square-integrable forcing function over our domain. Look at the
Poisson boundary value problem of finding u ∈ H2(Ω)—H1(Ω) functions with square-integrable
second weak derivatives—that satisfies{

−4u = f on Ω,
u = 0 on ∂Ω

. (1.1.9)

If this function u exists, then the following must certainly also hold for all v ∈ H1
0 (Ω):∫

Ω
−4u(x)v(x) dx =

∫
Ω
f(x)v(x) dx.

Now, v is weakly differentiable, so we can transfer a derivative to the other side [13, (5.1.6)]
introducing a normal derivative term,∫

Ω
−4u(x)v(x) dx =

∫
Ω
∇u(x) · ∇v(x) dx−

∫
∂Ω

∂u

∂n
(s)v(s) ds.

The last term vanishes, as v itself vanishes on the boundary of our domain.
In light of the above, we define

a(u, v) :=

∫
Ω
∇u · ∇v dx, F (v) :=

∫
Ω
fv dx. (1.1.10)

8

The mapping F is obviously linear; its continuity follows from (1.1.8):

‖F‖H1
0 (Ω)′ := sup

06=v∈H1
0 (Ω)

|F (v)|
‖v‖H1

0 (Ω)

≤ sup
0 6=v∈H1

0 (Ω)

‖f‖L2(Ω)‖v‖L2(Ω)

‖v‖H1
0 (Ω)

≤ sup
06=v∈H1

0 (Ω)

Cp

‖f‖L2(Ω)‖v‖H1
0 (Ω)

‖v‖H1
0 (Ω)

= Cp‖f‖L2(Ω) .

We now established that a(·, ·) and F (·) meet the conditions for the variational problem
of (1.1.6). We call (1.1.6) together with (1.1.10) the variational form of the Poisson equa-
tion.

1.1.2. The Lax-Milgram theorem

The second question, on existence and uniqueness, is easily answered by the following theorem.

Theorem 1.1.11 (Lax-Milgram [13, §2.7]). Given a Hilbert space (V, 〈·, ·〉), a bounded and
coercive bilinear form a(·, ·), and a continuous linear functional F ∈ V ′, there exists a unique
u = ua,F ∈ V with

a(u, v) = F (v) (v ∈ V).

Moreover, the problem of finding u is well-posed in the sense that

F 7→ ua,F is bounded.

Remark 1.1.12. The second assertion in the Lax-Milgram theorem shows that small pertur-
bations in F lead to small perturbations in the solution u. This is an essential result: In a
numerical setting, F is always slightly perturbed through floating-point representation. ♦

Corollary 1.1.13. Let V, and a(·, ·) meet the conditions for a variational problem. Then
(1.1.6) has a unique solution u ∈ V, and (1.1.7) has a unique solution uS ∈ S.

Proof. The space V is Hilbert. Applying Lax-Milgram yields the first result. Now, S ⊂ V is a
closed subspace of V so must be Hilbert as well; replacing V by S in Lax-Milgram then yields
the second.

1.1.3. Approximation errors

The answer to the third question, whether we can say anything valuable about the difference
u − uS , is more or less the central point to finite element analysis. Knowing that the (norm
of) this difference is small, is essential to any convergence analysis. However, this is a hard
problem: The proof of Lax-Milgram is not constructive, so even though we know that u and uS
exist, we have no idea what they look like. Even if we manage to construct uS via something
like a finite element method, it is entirely possible that no closed form of u exists so that still,
bounding this error norm seems like an impossible task. We will dive into this issue in later
sections. For now, we end this section with a few classic results.

Definition 1.1.14. The error e := u − uS is the difference between the real solution of
problem (1.1.6) and its Galerkin approximation in (1.1.7). ♦

9

Lemma 1.1.15 ([13, (2.8.5)]). Let (V, 〈·, ·〉) and the bilinear form a(·, ·) meet the conditions
for a variational problem. If a(·, ·) is symmetric, then for the energy norm:

‖e‖E = min
v∈S
‖u− v‖E .

In other words: If the bilinear form is symmetric, then uS is the optimal approximation to u
with respect to the energy norm.

Lemma 1.1.16. Let (V, 〈·, ·〉) and a(·, ·) meet the conditions for a symmetric variational prob-
lem. For two closed subspaces T ⊂ S ⊂ V , with Galerkin solutions uT resp. uS, we have
Pythagoras’s Theorem:

‖u− uS‖2E +‖uT − uS‖2E =‖u− uT ‖2E .

Proof. We know that u − uS ⊥E S by the Galerkin orthogonality, and that uT − uS ∈ S by
virtue of T ⊂ S. So Pythagoras must hold.

1.2. Finite elements

Finite elements give us a systematic way of constructing a finite-dimensional space S and
accompanying solution uS . In this section, we will follow the general structure of [13, Ch. 3].

Ciarlet [16] defines a finite element as follows.

Definition 1.2.1. When

i) K ⊂ Rn is a bounded closed set with nonempty interior, and piecewise smooth boundary
(the element domain);

ii) P is a finite-dimensional space of functions on K (the space of shape functions);

iii) N := {N1, . . . , NdimP} is a basis for P ′ (the set of degrees of freedom),

then (K,P,N) is a finite element. ♦

It is often hard to determine when N is a basis for P ′; the following result usually helps.

Lemma 1.2.2 ([13, (3.1.4)]). Let P be a d-dimensional vector space, and let N = {Ni : 1 ≤ i ≤ d} ⊂
P ′ be a subset of its dual. Then the following two statements are equivalent.

i) N is a basis for P ′;

ii) N determines P: If for a given ψ ∈ P, all N ∈ N satisfy N(ψ) = 0, then ψ = 0.

The following concepts will prove useful to our two-dimensional case.

Definition 1.2.3. A triangle is called nondegenerate when its volume is strictly positive.
Equivalently, seeing a triangle as the convex hull of its three vertices, it is nondegenerate
exactly when the vertices are not collinear.

In the following, we will often implicitly assume a triangle is nondegenerate. ♦

10

Definition 1.2.4 (Barycentric coordinates). Given a (nondegenerate) triangleK := hull(v1,v2,v3)
being the convex hull of its three vertices, we can define the barycentric coordinates of a point
x ∈ K as being the tuple λ ∈ R3 for which

λ1, λ2, λ3 ≥ 0, λ1 + λ2 + λ3 = 1, and x = λ1v1 + λ2v2 + λ3v3. ♦

Definition 1.2.5. We can sample these barycentric coordinates on the degree-p lattice index
set Ip :=

{
α ∈ N3

0 : |α| = p
}

. For instance,

I1 =
{

(1, 0, 0), (0, 1, 0), (0, 0, 1)
}
,

I2 =
{

(2, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1), (1, 0, 1)
}
.

Doing so gives rise to the lattice points on K:

Dp(K) := {vα : α ∈ Ip} , vα :=
α1

p
v1 +

α2

p
v2 +

α3

p
v3.

See Figure 1.2.6. ♦

(2,0,0)
(1, 1, 0)

(0,2,0)

(0, 1, 1)

(0,0,2)

(1, 0, 1)

v1

v1+v2
2 v2

v2+v3
2

v3

v1+v3
2

Figure 1.2.6.: Left: The lattice index set I2. Right: The lattice points D2(K) of an arbitrary
triangle K := hull(v1,v2,v3).

Definition 1.2.7. On a nondegenerate triangle K, the space Pp(K) of polynomials on K of
degree p is defined as

Pp(K) := span
{
xjyk : 0 ≤ j + k ≤ p : (x, y) ∈ K

}
. ♦

Lemma 1.2.8 ([13, Ex. 3.x.30]). Let K be a (nondegenerate) triangle. The space Pp(K) is
finite-dimensional and has dimension

dimPp(K) = #Ip = (p+ 1)(p+ 2)/2. (1.2.9)

Lemma 1.2.10 ([13, (3.2.4)]). Let K be a nondegenerate triangle. Then the set of point
evaluations on Dp(K) determines Pp(K) in the sense of Lemma 1.2.2.

With these quantities in hand, let us look at a classic example.

11

Example 1.2.11 (Lagrange element). Let K := hull(v1,v2,v3) be a triangle in R2. Define
P := Pp(K) to be the space of degree-p polynomials on K. Let the set N consist of point
evaluations on Dp(K)—N :=

{
ψ 7→ ψ(vλ) : vλ ∈ Dp(K)

}
.

By Lemma 1.2.10, any degree-p polynomial is completely determined by its point evaluations
on Dp(K). Hence, if a polynomial vanishes on all such points, it must be the zero function.
Then, by Lemma 1.2.2, the tuple (K,P,N) is a finite element. We call this the (degree-p)
Lagrange element. ♦

Definition 1.2.12. Let (K,P,N) be a finite element. The basis {φ1, . . . , φdimP} of P dual
to N (i.e., Ni(φj) = δij) is called the nodal basis of P. ♦

We now hold the definition of a finite element, and a concrete example of one. How do we
link this to the construction of subspaces S of the Sobolev space V ? For this, we need a couple
more ingredients: triangulations and interpolants.

1.2.1. Triangulations

Definition 1.2.13 (Triangulation). Consider some polygonal domain Ω. We define a trian-
gulation of Ω as being a finite collection K := {K} of triangles with

i) ∪K∈KK = Ω (the triangles cover Ω);

ii) K◦ ∩ L◦ = ∅ when K 6= L (no overlap);

Often, we also desire this triangulation to be conforming, in that

iii) For any two triangles K 6= L, K ∩L is (a) empty, (b) a common vertex, or (c) a common
edge. ♦

Especially the last condition is important: It tells us that there are no hanging nodes—a
vertex in the middle of a triangle’s edge—and that, essentially, the triangles “glue together
nicely”. See Figure 1.2.14 for a visualization.

(0, 0) (1, 0)

(0, 1) (1, 1)

K1

K2

(0, 0) (1, 0)

(0, 1) (1, 1)

(1
2 ,

1
2)

K1

K2

K3

Figure 1.2.14.: Left: A triangulation of Ω := (0, 1)2 with two triangles. Right: A non-
conforming triangulation of Ω; the center has a hanging node.

Definition 1.2.15. Take a domain Ω with a conforming triangulation K, and on each triangle,
a finite element. The finite element space V (K) associated with our boundary value problem
from (1.1.9) is then defined as

V (K) :=
{
v ∈ H1

0 (Ω) : v|K ∈ P(K) (K ∈ K)
}
. ♦

12

Theorem 1.2.16. Let Ω be a domain with conforming triangulation K. Equip each triangle
with a finite element (K,P(K),N (K)). Then the finite element space satisfies

V (K) ⊂ C(Ω).

Proof. Choose v ∈ V (K); then v is continuous on the interior of all triangles, so it suffices
to show that v is continuous over edges. As v|∂Ω = 0, edges on the domain boundary are a
non-issue; we are left with the case when e 6⊂ ∂Ω.

Let K1,K2 ∈ K share an edge e := K1∩K2. Assume the function v is not continuous over e.
We know that v ∈ H1

0 (Ω), hence in H1(K1∪K2), so it has weak derivatives ∂αv ∈ L2(K1∪K2)
for α ∈ N2

0 with |α| = 1, or in other words

L : L2(K1 ∪K2)→ R : w 7→ −
∫

K1∪K2

(
∂αv(x)

)
w(x) dx ∈ L2(K1 ∪K2)′.

This means that ∣∣L(w)
∣∣ ≤ C‖w‖L2(K1∪K2)

(
w ∈ L2(K1 ∪K2)

)
. (1.2.17)

Take an α ∈ N2
0 so that α · nK1 6= 0, with nK the outward normal of K. Take a function

w ∈ C∞0 (K1 ∪K2) ⊂ L2(K1 ∪K2). Then, by definition of the weak derivative, and using that
v|Kk ∈ P(Kk),

L(w) = −
∫

K1∪K2

(
∂αv(x)

)
w(x) dx :=

∫
K1∪K2

v(x)
(
∂αw(x)

)
dx =

2∑
k=1

∫
Kk

v(x)
(
∂αw(x)

)
dx

=
2∑

k=1

− ∫
Kk

(
∂αv(x)

)
w(x) dx+

∫
∂Kk

v(s)w(s)α · nKk ds

 .
Now, w vanishes everywhere on ∂Kk except on e, so the above reduces to

L(w) = −
2∑

k=1

∫
Kk

(
∂αv(x)

)
w(x) dx+

∫
e
(v|K1 − v|K2)(s)w(s)α · nK1 ds.

To find (1.2.17), we must bound L(w). The first term can be bounded by

−
2∑

k=1

∫
Kk

(
∂αv(x)

)
w(x) dx ≤‖∂αv‖L2(K1∪K2)‖w‖L2(K1∪K2) .

For the second term: One can find a sequence (wn)n of test functions with unit L2(K1 ∪K2)-
norm such that the second term grows unbounded in n; this is due to the jump v|K1−v|K2 6= 0
and α · nK1 6= 0. The result is that (1.2.17) does not hold, which is a contradiction with the
earlier assumption that v was not continuous over e.

Example 1.2.18 (Linear Lagrange elements). With Lagrange elements of degree p = 1, we
can simplify a lot of the concepts we’ve seen thus far. Let Ω be some polygonal domain in R2,
and let K be some conforming triangulation on this domain.

13

Locally on a triangle K := hull(vK1 ,v
K
2 ,v

K
3), we can define the nodal basis

{
φK1 , φ

K
2 , φ

K
3

}
of linear functions with φKi (vj) = δij .

Look at the result of Theorem 1.2.16. We see that V (K) contains the continuous functions
that vanish on ∂Ω and are moreover piecewise linear with respect to K. We collect all vertices
on triangles in K in a set V, i.e.,

V :=
⋃
K∈K

{
vK1 ,v

K
2 ,v

K
3 : K = hull(vK1 ,v

K
2 ,v

K
3)
}
,

and take the subset of all interior vertices Vint := V \ ∂Ω. We can patch together (a subset of)
the local basis functions into a global hat function φv through

φv : Ω→ R : x 7→ φv(x)|K =

{
φKi (x) if v = vKi for some i

0 else
(v ∈ Vint,K ∈ K).

From this, we see that the global linear hat functions φv are characterized by

φv(w) = δvw, (v ∈ Vint,w ∈ V),

that they span the entire space V (K), and that they themselves are linearly independent, so
they must be a basis for V (K).

Let’s look at an instructive example. Let Ω and K be characterized as in the left of Fig-
ure 1.2.19. The only two vertices not on the domain boundary are denoted v and w, and make
up the set Vint. There are two global basis functions, and it is immediately obvious why φv is
called a hat function: It vanishes on all vertices except the one it is associated with. ♦

Figure 1.2.19.: Visual aid for Example 1.2.18. Left: domain Ω, with two interior vertices v and
w. Right: the global hat function φv.

We will now show that this systematic construction of V (K) paves the way to an actual
solution.

1.2.2. Constructing the Galerkin solution

We know by the Lax-Milgram theorem that the Ritz-Galerkin problem has a unique solution
uK ∈ V (K), and we will now look at actually constructing it.

14

Assume that one has a global basis Φ := {φ} on V (K). If we manage to find a function uK
for which

a(uK, φ) = F (φ) (φ ∈ Φ)

holds, then by linearity, it must hold for any v ∈ V (K) thereby solving the approximation
problem. Viewing Φ as a vector of functions, we can formulate the equivalent problem of
finding the vector u ∈ R#Φ that solves

a

∑
j

ujφj , φi

 = F (φi) (1 ≤ i ≤ #Φ) .

Again by linearity of a(·, φi), this boils down to finding u with∑
j

uja(φj , φi) = F (φi) (1 ≤ i ≤ #Φ) . (1.2.20)

Definition 1.2.21. In (1.2.20), the quantities a(φj , φi) and F (φi) can be collected in a stiffness
matrix A resp. load vector b, together forming the linear system

Au = b, A :=
[
a(φj , φi)

]#Φ

i,j=1
, b :=

[
F (φi)

]#Φ

i=1
,

which can be solved using a suitable linear solver. ♦

1.3. A priori error estimation

Now that we know how to construct an approximation space and the accompanying finite
element solution, it is time to shed some light on the estimation of ‖u− uS‖H1(Ω).

Some notation will prove useful.

Definition 1.3.1. For two scalar quantities A and B dependent on a variable—a real-valued
function, for instance—we will write A . B when there is a constant C independent of this
variable such that A ≤ CB, and write A h B when A . B and B . A. ♦

Definition 1.3.2 (Affine equivalence). Let (K̂, P̂, N̂) be a finite element, and let F (x̂) = Ax̂ + b
be an affine map with detA 6= 0. Then (K̂, P̂, N̂) and (K,P,N) are affine equivalent iff with
φ := φ̂ ◦ F−1,

i) F (K̂) = K;

ii)
{
φ : φ̂ ∈ P̂

}
= P;

iii)
{
φ̂ 7→ N(φ) : N ∈ N

}
= N̂ . ♦

Lemma 1.3.3 ([13, (3.4.10)]). All Lagrange elements of given degree are affine equivalent.

Definition 1.3.4. With (K,P,N) a finite element, we define

hK := inf
{

diam(S) : S ball containing K
}
,

ρK := sup
{

diam(S) : S ball contained in K
}
.

A family of finite elements
{

(K,P,N)
}

is called uniformly shape regular when

sup
K
hK/ρK <∞. ♦

15

Such a uniformly shape regular family of elements has a bound on the “degeneracy” of the
triangles it contains, so that triangles have similar shapes. This property can be used to arrive
at a classical result bounding the local interpolation error.

Definition 1.3.5. Given a finite element (K,P,N), and Φ = {φi : 1 ≤ i ≤ d} its nodal basis
from Definition 1.2.12. If v is a function for which

{
Ni(v) : Ni ∈ N

}
are all defined, then, we

can define the local interpolant as

IK(v) :=
d∑
i=1

Ni(v)φi. ♦

Theorem 1.3.6 ([42, Thm. 2.1]). Let (K̂, P̂, N̂) be an element in two dimensions (the refer-
ence element). Suppose that the degrees of freedom in N̂ don’t involve any derivatives.

Take a uniformly shape regular family of finite elements
{

(K,P,N)
}

, each affine equivalent
to the reference element.

If for k ≥ 1 we have Pk(K) ⊂ P̂, then it holds that

|v − IKv|Hm(K) . h
k+1−m
K |v|Hk+1(K) ,

(
0 ≤ m ≤ k + 1, v ∈ Hk+1(K)

)
.

Corollary 1.3.7. The degrees of freedom of the Lagrange element are simply point evaluations—
there are no derivatives involved. With Lemma 1.3.3, we see that the above theorem holds for
Lagrange finite elements.

In fact, we can collect the local results as follows to arrive at a global bound.

Corollary 1.3.8. Let Ω be a domain. Take a conforming triangulation K of elements affine
equivalent to some reference element (K̂, P̂, N̂). Then with the same conditions as in the
previous theorem,∑

K∈K
h

2(m−k−1)
K ‖v − IKv‖2Hm(K)

1/2

. |v|Hk+1(Ω)

(
v ∈ Hk+1(Ω)

)
.

1.3.1. Convergence of Galerkin solutions

Corollary 1.3.8 shows an important result. Say we are solving the Poisson problem, and assume
its solution satisfies u ∈ H2(Ω)∩H1

0 (Ω). For simplicity, assume linear Lagrange finite elements
throughout.

Given a triangulation K, we can define the global interpolant of u in a piecewise manner
through

IKu|K := IKu.

This interpolant is well-defined and continuous on Ω, as it coincides with u on every vertex in
the triangulation, hence it is a member of H1(Ω). Now, through Corollary 1.3.8,

‖u− IKu‖H1(Ω) =

∑
K∈K
‖u− IKu‖2H1(K)

1/2

. h|u|H2(Ω)

where h := supK∈K hK .

16

Moreover, by virtue of u|∂Ω = 0, IKu vanishes on ∂Ω so it is even in H1
0 (Ω). Locally,

IKu|K ∈ P(K), so IKu must be in V (K). Stringing everything together yields the inequality

‖u− uS‖H1
0 (Ω) = min

v∈V (K)
‖u− v‖H1

0 (Ω) ≤‖u− IKu‖H1
0 (Ω) ≤‖u− IKu‖H1(Ω) . h|u|H2(Ω) .

In words, when the solution is smooth, we can expect linear convergence of the finite element
solution to the real solution in terms of the mesh width h = h(K). In less smooth situations,
we have the following similar but weaker result asserting convergence.

Theorem 1.3.9 ([16, Thm 3.2.3]). Let Ω be a domain. Suppose we have a sequence of con-
forming triangulations (Kn)n with limn→∞ h(Kn) = 0, and that every element in these trian-
gulations is affine equivalent to a Lagrange reference element (K̂, P̂, N̂). Then the following
relation holds:

lim
n→∞

‖u− uKn‖H1(Ω) = 0.

This tells us that the solutions are known to converge, but it doesn’t tell us anything about
the rate. The error bounds of this section were all independent of the actual Galerkin solutions,
measured in terms of h instead. We call this a priori error estimation, because we use a priori
information on the exact solution u, such as u ∈ H2(Ω). Often, we don’t have this kind
information. Luckily, using knowledge of the Galerkin solution locally on elements, we can
make much more precise statements. This is called a posteriori error estimation which we will
study in the next section.

Even when u 6∈ H2(Ω), some smoothness can be expected: It is known (cf. [21, §6.4]) that in
the Poisson equation, when f ∈ L2(Ω), u shows interior regularity in that u ∈ H2(Σ) for every
Σ ⊂ Ω with Σ ⊂ Ω. Therefore, u is smooth in the domain interior so it doesn’t require the
level of refinement its non-smooth parts need. In other words, it makes sense not to subdivide
every triangle, but just those ones where the approximation error is large. This is problematic
using the current tools, as they only give us information globally. We will develop tools for
local error indication in the next section, and study adaptive grid refinement in §1.5.

1.4. A posteriori error estimation

A posteriori error estimation has spawned a thriving field of research. Let’s focus on our model
problem of solving the Poisson equation; see §1.1.1.

Definition 1.4.1. Given some conforming finite element triangulation K, we can define a
mapping

η : V (K)×K → R+ : (v,K) 7→ η(v,K)

that gives some indication of the difference of the exact solution u and its approximation v in
the local energy norm |·|H1(K). (In most cases, we select v either equal or closely related to uK,
in which case η(v,K) is related to the error norm |e|H1(K).) We therefore call this mapping
the local error indicator. For M⊂ K, we can define

η(v,M)2 :=
∑
K∈M

η(v,K)2.

It is often desirable for error indicators to be efficient in that there is a constant Ceff > 0
with

η(uK,K)2 ≤ Ceff‖e‖2H1
0 (Ω) ;

17

in other words, if η is large, then the error norm must be large as well. Conversely, it should
be reliable in the sense that there is a Crel > 0 with

Crel‖e‖2H1
0 (Ω) ≤ η(uK,K)2

so that when η is small, the true error norm is small as well. ♦

Remark 1.4.2. To shed some light on the difference in naming between error indication and
estimation: Locally, these error indicators do not generally estimate the error norm (in the
sense that η(uK,K) 6h ‖e‖H1

0 (K)); they merely give an indication of the local error norm.

Globally, however, the quantity η(uK,K) does estimate the global error norm ‖u− uK‖H1
0 (Ω)

(modulo a—usually of higher order—data oscillation term we will discuss promptly). ♦

Definition 1.4.3. Assume a finite element method based on Lagrange elements of degree p.
Take M⊂ K, and fix N0 3 r ≥ p− 2. One then defines the oscillation term as

osc(K)2 = oscr(K)2 := h2
K‖f − P rf‖

2
L2(K) , osc(M)2 :=

∑
K∈M

osc(K)2

where P r is the L2(K)-projector onto Pr(K), and f is the forcing function present in the
Poisson equation. The total error is then

E(K) :=
√
‖u− uK‖2H1

0 (Ω) + osc(K)2.

Often, efficiency and reliability is defined with respect to the total error instead of just error
norm. This is because our finite element space is discrete and therefore cannot be expected
to capture every detail of forcing functions in the (infinite-dimensional) space L2(Ω). This is
especially true for the highly oscillatory components, hence the name. In theory, this oscillation
term can be of the same magnitude as the error norm; in practice however, it is often much
smaller—cf. [42, Ex. 11.3]. ♦

1.4.1. Refinement error indicator

One can define a very simple error indicator with good practical results. It hinges on the
notion of grid refinement, which we will study in more detail in §1.5. For now, assume that it
is possible to subdivide every triangle in K into two smaller ones while maintaining uniform
shape regularity. Recursively applying this rule yields a highly refined K∗.

Relative to K, uK∗ is (hoped to be) a good approximation to the real solution u by the
convergence result of Theorem 1.3.9.

Definition 1.4.4. Given a conforming triangulation K, define K∗ by two recursive subdivisions
of every triangle in K. We can then estimate |u− v|H1(K) by the refinement error indicator

ηRef(v,K) := |uK∗ − v|H1(K) . ♦

We see by Lemma 1.1.16 that

ηRef(uK,K)2 =‖u− uK‖2H1
0 (Ω) −‖u− uK∗‖

2
H1

0 (Ω) ≤‖u− uK‖
2
H1

0 (Ω)

so this error estimator is efficient with Ceff = 1. It is however not reliable; when uK = uK∗

with u 6= uK, then for each Crel > 0,

Crel‖e‖2H1
0 (Ω) > ηRef(uK,K)2 = 0.

18

Example 1.4.5 ([38, p. 62]). Let’s look at our model Poisson problem from §1.1.1, on Ω :=
(0, 1)2. Choose f := 1, so that there is no data oscillation. Take linear Lagrange elements on
the three conforming triangulations K0,K1,K2 depicted in Figure 1.4.6. Each one is created
from the previous by subdividing each triangle into two.

v0

K0

v0

K1

v0

v1

v2 v3

v4

K2

Figure 1.4.6.: Visual aid with Example 1.4.5.

Linear Lagrange elements induce a global basis of hat functions through the local nodal
basis; cf. Example 1.2.18.

On K0 and K1, we see that every Lagrange node except for v0 is on ∂Ω. Therefore the spaces
V (K0) and V (K1) are both spanned by a single hat function φ0, so their Galerkin solutions
must coincide. In fact, the function

uK0 =
1

12
φ0 = uK1 6= u

solves the Galerkin approximation problem on both K0 and K1. The refinement error indicator
defined through a single uniform refinement is certainly not reliable.

It turns out, though, that even two refinements is not enough to get a positive error esti-
mate. The space V (K2) is spanned by five hat functions. But one can show that the function
uK2

:= uK0 solves the Galerkin problem on K2 as well—the error estimate
∥∥uK0 − uK2

∥∥
H1

0 (Ω)

still vanishes after two uniform refinements. ♦

1.4.2. Residual error indicator

Any reliable error indicator should use information about the problem at hand. In this para-
graph, we will sketch the derivation of the classical residual-based error indicator. The residual
embedded in its name is defined by

R ∈ V ′ : R(v) = a(e, v) = a(u− uK, v) = F (v)− a(uK, v).

Note that this residual vanishes for vK ∈ V (K), so take an arbitrary one. The first step is
to decompose this equation into local contributions on each element:

R(v) = R(v − vK)

=
∑
K∈K

[∫
K
f(x)

(
v(x)− vK(x)

)
dx−

∫
K
∇uK(x) · ∇

(
v(x)− vK(x)

)
dx

]
.

19

We can then use partial integration to get rid of the gradient on v− vK, gaining an edge term:

R(v) =
∑
K∈K

[∫
K

(
f(x) +4uK(x)

) (
v(x)− vK(x)

)
dx−

∫
∂K

∂uK
∂n

(s)
(
v(s)− vK(s)

)
ds

]
with n the outward normal to ∂K. We know that both v and vK vanish on all edges on ∂Ω,
so define Eint as the set of all interior edges. We can then collect edge terms by

R(v) =
∑
K∈K

∫
K

(
f(x) +4uK(x)

) (
v(x)− vK(x)

)
dx−

∑
e∈Eint

∫
e
J∇uKKe (s)

(
v(s)− vK(s)

)
ds

where
J∇φKe (x) := lim

ε→0

(
(∇φ)(x + εne)− (∇φ)(x− εne)

)
· ne

is the jump operator, and ne is any normal on e—either one of the two suffices.
Lastly, by Schwarz’s inequality,

R(v) ≤
∑
K∈K
‖f +4uK‖L2(K)‖v − vK‖L2(K) +

∑
e∈Eint

∥∥J∇uKKe
∥∥
L2(e)
‖v − vK‖L2(e) .

Select vK to be the Scott-Zhang interpolant [40] of v. For this interpolant, we can bound
the interpolation errors as follows, cf. [42, (9)]:

‖v − vK‖L2(K) . hK‖v‖H1
0 (S(K,K)) , ‖v − vK‖L2(e) . h

1/2
Ke
‖v‖H1

0 (S(Ke,K)) (1.4.7)

where
S(K,K) :=

{
K ′ ∈ K : K ∩K ′ 6= ∅

}
is a patch around K, and Ke is some element adjacent to e. With this, the above bound
reduces to

R(v) .
∑
K∈K

hK‖f +4uK‖L2(K)‖v‖H1
0 (S(K,K)) +

∑
e∈Eint

h
1/2
Ke

∥∥J∇uKKe
∥∥
L2(e)
‖v‖H1

0 (S(Ke,K))

≤
√∑
K∈K

h2
K‖f +4uK‖2L2(K)

√∑
K∈K
‖v‖2H1

0 (S(K,K))

+

√ ∑
e∈Eint

hKe
∥∥J∇uKKe

∥∥2

L2(e)

√ ∑
e∈Eint

‖v‖2H1
0 (S(Ke,K)).

In turn, by uniform shape regularity, we find∑
K∈K
‖v‖2H1

0 (S(K,K)) .‖v‖
2
H1

0 (Ω) ,
∑
e∈Eint

‖v‖2H1
0 (S(Ke,K)) .‖v‖

2
H1

0 (Ω)

yielding

R(v) .‖v‖H1
0 (Ω)

∑
K∈K

h2
K‖f +4uK‖2L2(K) +

∑
e∈Eint

hKe
∥∥J∇uKKe

∥∥2

L2(e)

1/2

.

20

Noting that

‖u− uK‖H1
0 (Ω) ≤ sup

06=v∈V

a(u− uK, v)

‖v‖H1
0 (Ω)

= sup
06=v∈V

R(v)

‖v‖H1
0 (Ω)

,

we then find a bound on the error norm as follows:

‖u− uK‖2H1
0 (Ω) .

∑
K∈K

h2
K‖f +4uK‖2L2(K) +

∑
e∈Eint

hKe
∥∥J∇uKKe

∥∥2

L2(e)
.

Collecting edge terms over each triangle gives rise to the following definition.

Definition 1.4.8 (Residual-based error indicator). Given a conforming finite element trian-
gulation K of Lagrange elements with fixed degree p, define the residual-based error indicator
as

ηRes(v,K)2 := h2
K‖f +4uK‖2L2(K) +

hK
2

∥∥J∇uKKe
∥∥2

L2(∂K\∂Ω)
. ♦

Theorem 1.4.9. The residual-based error indicator is both efficient and reliable.

Proof. In deriving the error indicator, we also implicitly proved its reliability. For a proof of
its efficiency, we refer to [42, Thm. 7.2].

1.4.3. Melenk-Wohlmuth error indicator

We broaden our view slightly and allow the Lagrange degree p to vary from element to ele-
ment. By looking closely at the constants hidden in the .-type estimations above—some, such
as (1.4.7), depend on p locally—Melenk and Wohlmuth [33] derived an error indicator akin to
the residual-based error indicator, applied to this hp-case.

Definition 1.4.10. Given a conforming finite element triangulation K of Lagrange elements
with local degree pK , define the Melenk-Wohlmuth error indicator as

ηMW(v,K)2 :=
h2
K

p2
K

∥∥∥P (pK−1)f +4uK
∥∥∥2

L2(K)
+

∑
e⊂∂K\∂Ω

|e|
2pe

∥∥J∇uKKe
∥∥2

L2(e)
, (K ∈ K)

(1.4.11)
where P r is the L2(K)-projector on Pr(K), |e| is the length of the edge, and pe := max

{
pK1 , pK2

}
with K1 and K2 the two elements adjacent to e. ♦

Their results rely on the following assumption.

Assumption 1.4.12. The polynomial degrees of neighbouring elements satisfy

∃ν ≥ 1 s.t.
pK + 1

pK′ + 1
≤ ν. ♦

Under this assumption, Melenk and Wohlmuth provide us with very specific efficiency and
reliability bounds, summarized in the following theorem.

Theorem 1.4.13 ([33, Thm. 3.6]). Take ε > 0. Then there exist Crel, Ceff(ε) > 0 independent
of h and {pK} such that

Crel‖e‖2H1
0 (Ω) ≤

∑
K∈K

ηMW(uK,K)2 +
1

p2
K

osc2
pK−1(K),

ηMW(uK,K)2 ≤ Ceff(ε)p1+2ε
K

(
pK‖e‖2H1

0 (S(K,K)) +
1

p2−2ε
K

osc2
pK−1(S(K,K))

)
(K ∈ K).

21

Corollary 1.4.14. Forget for a second about the data oscillation (by, for instance, assuming
f = 1). Then the second global efficiency bound in Theorem 1.4.13 reads as

ηMW(uK,K)2 . Ceff(ε)‖pK‖2+2ε
∞ ‖e‖2H1

0 (Ω) , ‖pK‖∞ := max
K∈K

pK .

In other words, the efficiency is (essentially linearly) dependent on the maximal polynomial
degree.

Their numerical results suggest that this efficiency degradation is not seen in practice; how-
ever, it is mentioned in [11] that p-robustness—that the reliability and efficiency bounds do
not degrade as p increases—can not be expected of this estimator, and that the efficiency is
truly dependent on p.

1.4.4. Equilibrated flux indicator

The final error indicator we will mention in this paragraph is the Equilibrated flux indicator.
It was proven to be p-robust in [11]. Its formulation is much more complex than the previous
indicators so we will refrain from diving into it; the estimator was studied in great detail by
van Venetië [46].

1.5. Grid refinement

In this section, we will focus on the two-dimensional case. Recall from Theorem 1.3.9 that
given a sequence of triangulations with mesh width going to zero, we guaranteed convergence
of their finite element solutions to the real solution. This section studies the refinement of
triangulations as to produce such a sequence.

We will study the refinement of a triangulation by subdividing selected triangles into smaller
ones. Subsequent error estimates benefit from certain properties, such as:

1. being able to refine a triangulation locally;

2. ensuring conformity when refining a conforming triangulation;

3. ensuring uniform shape regularity among all triangles in these triangulations.

Definition 1.5.1. Two triangles K ′ and K ′′ are similar when there is an orthogonal matrix
Q ∈ R2×2, a vector b ∈ R2, and a scalar λ > 0, so that

F (x) := λQx + b with F (K ′) = K ′′. ♦

Example 1.5.2. Given some conforming triangulation K with mesh width h, we can create a
refined triangulation K∗ with mesh width h/2 by connecting the midpoints of the edges of all
triangles. Indeed: this will create four children triangles

{
Ki
}

per K ∈ K, each similar to its
parent, with λ = 1

2 . Then each Ki must have hKi = hK/2, and ρKi = ρK/2 so that K∗ is still
uniformly shape regular, with mesh width h/2.

This method of connecting midpoints in a pairwise manner is easy, but it does introduce
hanging nodes when refining locally, thereby hampering (p-robust) a posteriori error estimation.

♦

22

Of course, finding such refinements is not a goal in itself: It serves as a way to drive the
approximation error down. Given some insight about the local errors, we can also focus our
energy by adaptively refining only those triangles on which the error is large. This is not
trivial: In the previous example, subdividing just one triangle into its four children introduces
hanging nodes. This in itself is no disaster, but efficiency and reliability bounds are dependent
on the (maximum) number of hanging nodes per edge, so p-robust error indicators require
an upper bound on this number. We restrict ourselves to the simplest case by requiring that
no hanging nodes appear anywhere; this is in line with our earlier definition of a conforming
triangulation: a triangulation with no hanging nodes.

We will now provide a method that allows meeting all three criteria above.

Definition 1.5.3. Given a triangle K := hull(v1,v2,v3), we can select one of its vertices as
the newest vertex v(K). The edge opposite this newest vertex is called its refinement edge
e(K).

Newest vertex bisection of a triangle K works by connecting v(K) to the middle point p of
e(K), resulting in two trianglesK1 andK2. For both child triangles, we select v(K1) := p =: v(K2)
as their newest vertex.

See Figure 1.5.4 for an illustration. ♦

v1 = v(K)

v2v3

K

e(K)

bisect

K1

e(K1)

K2

e(K2)

v(K1) = p = v(K2)

Figure 1.5.4.: Newest vertex bisection. Left: A triangleK with newest vertex v(K) (signified by
the arrow) and bisection edge e(K). Right: The two child triangles created after
bisecting K; the newly created vertex p is the newest vertex of both children.

Definition 1.5.5. Let K0 be an initial conforming triangulation of Ω. Define K to be the
collection of all (not necessarily conforming) triangulations of Ω generated from K0 by means
of newest vertex bisection. The set K := ∪K∈KK of all triangles in K can then be interpreted
as a multiple-rooted infinite binary tree, each root being a triangle in K0.

A set T ⊂ K is a subtree when

i) T has a finite number of nodes;

ii) T contains all roots of K;

iii) when K ∈ T is not a root of K, its parent and sibling are both in T as well.

The nodes of T with no children are called leaves, which we will denote by L(T).
With this definition, there is a one-to-one mapping between triangulations K ∈ K and the

leaves of subtrees TK of K. See Figure 1.5.6. ♦

23

K0 K1

K0

K1

K0 K1

K2 K3

K0

K2

K3

K0 K1

K2

K4 K5

K3

K0

K3

K5 K4

Figure 1.5.6.: Three triangulations of the domain Ω := (0, 1)2. Top: The triangulations K seen
as elements of K. Bottom: the triangulations seen as the leaves of subtrees TK.

Theorem 1.5.7 ([34]). All triangles K ∈ K are uniformly shape regular.

Proof (sketch). By virtue of the newest vertex bisection, any descendant of K ∈ K0 inside K is
in one of four equivalence classes (K ∼ L when K and L are similar). There is a finite number
of triangles in K0 hence a finite number of equivalence classes in total, so K is uniformly shape
regular.

Definition 1.5.8. For K,K′ ∈ K, we will say that K′ ≥ K when K′ is a refinement of K, i.e.,
K ⊂ K′ when viewed as subtrees of K. ♦

Definition 1.5.9. Note again that the triangulations K ∈ K are not necessarily conforming;
take as an example the middle triangulation of Figure 1.5.6.

We can define the subset Kc ⊂ K of conforming triangulations. We will see that both sets
K and Kc play a big role in the next chapters; for now, we will focus mainly on conforming
triangulations K ∈ Kc. ♦

Lemma 1.5.10 ([44, Thm. 4.3]). If K ∈ Kc is a conforming triangulation, then recursively
performing two refinements on every triangle—two uniform refinements—yields a triangulation
K′ ≥ K that is conforming. In other words, K′ ∈ Kc as well.

Definition 1.5.11. A conforming triangulation K ∈ Kc is said to satisfy the matching condi-
tion when for each triangle K ∈ K, its refinement edge is either on the boundary of the domain,
or its neighbour along this edge also has its refinement edge there. See Figure 1.5.14(a) and (b)
for two examples of a matching and a non-matching triangulation. ♦

Theorem 1.5.12 ([10, Lem. 2.1]). On any conforming triangulation, one can select the newest
vertices in such a way that the matching condition is satisfied.

Remark 1.5.13 ([10, p. 229]). Even though existence of such a selection is ensured, the proof
is not constructive and no efficient algorithm is known. The usual solution is to perform two
uniform refinements—yielding a conforming triangulation; cf. Lemma 1.5.10—and relabeling

24

(a) (b) (c) (d) (e)

Figure 1.5.14.: Understanding the matching condition. Arrows signify newest vertices. (a)
a matching triangulation; (b) a non-matching triangulation K1; (c) bisecting
each triangle in K1 to get K2; (d) bisecting each triangle in K2 to get K3; (e)
relabeling newest vertices in K3 to get a matching triangulation K.

the vertices in accordance with Figure 1.5.14 by creating pairs of elements that share a refine-
ment edge. ♦

Assumption 1.5.15. From this point on, we will assume any initial triangulation to be
matching. ♦

We will end this section with two important algorithms; the first will play a central role in
the analysis of h-AFEM, while the second is invaluable for hp-AFEM.

Theorem 1.5.16 ([43],[10, Lem. 2.5]). Assume K0 ∈ Kc is matching (see above assumption).
For each conforming K ≥ K0, Algorithm 1.5.17(a) terminates and yields the smallest con-

forming refinement of K in which a given K ∈ K is bisected.
If Kc 63 K ≥ K0 is not conforming, but still found from K0 by means of newest vertex

bisection, Algorithm 1.5.17(b) can be used to find the smallest conforming refinement

C(K) := arg min
{

#K̃ : Kc 3 K̃ ≥ K
}
∈ Kc

of K. It holds that #C(K) . #K.

1.6. h-AFEM

We can use this notion of local refinements to formulate an adaptive finite element method
when using Lagrange elements of fixed degree. We utilize the local a posteriori error indicators
η(uK,K) to mark those elements with large indicated error and refine those into a new con-
forming triangulation, hoping for a large reduction of the total error. It can be summarized in
the following loop:

SOLVE→ ESTIMATE→ MARK→ REFINE. (1.6.1)

In more detail:

SOLVE We construct a Galerkin solution uk from the triangulation Kk using the technique
developed in §1.2.2.

25

1: function Refine(K conforming, K ∈ K)
2: if e(K) ⊂ ∂Ω then
3: bisect K, and update K;
4: return K.
5:

6: K ′ is the neighbour of K along e(K);
7: if e(K ′) = e(K) then
8: bisect K and K ′, and update K;
9: else

10: K := Refine(K, K ′);
11: K̃ := child of K ′ s.t. e(K̃) = e(K);
12: bisect K and K̃, and update K;

13: return K.

1: function MakeConform(K)
2: M := {};
3: for all K ∈ K do
4: if K has hanging vertex then
5: put K into M ;

6: while M 6= ∅ do
7: extract some K from M ;
8: bisect K and update K;
9: for both children K ′ of K do

10: if K ′ has hanging vertex then
11: put K ′ into M ;

12: for all neighbours K ′ of K do
13: if K ′ has hanging vertex then
14: put K ′ into M ;

15: return K.

Algorithm 1.5.17: The Refine and MakeConform procedures for finding the smallest conforming
refinement of a conforming resp. non-conforming triangulation.

ESTIMATE We then estimate the local error this Galerkin solution makes with the true
solution. In estimating the local error, it is useful to use an efficient and reliable error
indicator. For h-AFEM, the residual-based error indicator of §1.4.2 is often used.

MARK Selecting a minimal set Mk ⊂ Kk for which η(uk,Mk) ≥ θη(uk,Kk) can simply be
achieved by selecting elements from large to small indicators. Marking a set that captures
a fraction θ of the error is called bulk chasing ; marking a minimal set is called a Dörfler
marking.

REFINE We define the next triangulation by refining all marked elements. By Theorem 1.5.16,
the Refine-step produces the smallest conforming refinement in which all K ∈ Mk are
bisected.

The algorithm

The loop above yields h-AFEM in Algorithm 1.6.2. The algorithm iteratively computes (con-
forming) triangulations Kk, and Galerkin solutions uKk . One can prove that under certain
mild conditions, the solutions produced by h-AFEM show an optimal convergence rate to the
real solution—we will look into this shortly.

h-AFEM converges with the best possible rate

We will end this section with a classical result by Stevenson [43].

Definition 1.6.3. Let Ω ⊂ R2 be a domain. Take K0 an initial (conforming) triangulation.

26

1: procedure h-AFEM(K0, θ ∈ (0, 1], ε > 0)
2: for all k ∈ N0 do
3: // SOLVE

4: solve uk ∈ V (Kk) from (1.1.7);
5: // ESTIMATE

6: compute
{
η(uk,K) : K ∈ Kk

}
;

7: if η(uk,Kk) < ε then
8: return
9: // MARK

10: select a smallest Mk ⊂ Kk with
11: η(uk,Mk) ≥ θη(uk,Kk);
12: // REFINE

13: while Mk ∩ Kk 6= ∅ do
14: Take K ∈Mk ∩ Kk;
15: Kk := Refine(Kk,K);

16:

17: Kk+1 := Kk.

Algorithm 1.6.2: The h-adaptive finite element method as described in [43].

For s > 0, define the approximation class

As :=
{
u ∈ H1

0 (Ω) : 4u ∈ L2(Ω), |u|As <∞
}
,

|u|As := sup
N∈N

(N + 1)s min
{K∈Kc:#K−#K0≤N}

E(K)

where E(K) was the total error on K. ♦

Remark 1.6.4. When u ∈ As, the best conforming triangulation KN with #K0 +N triangles
has a total error E(KN) ≤ (#KN +1)−s|u|As . In other words, when u ∈ As, there is a sequence
of conforming triangulations (KN)N for which the total error decays with rate s. ♦

Definition 1.6.5. An a posteriori error indicator η provides discrete reliability when given
two conforming triangulations—one a refinement of the other—we can bound the norm of the
difference between the two discrete solutions by the indicators on the refined elements.

More precisely, select K ∈ Kc, and take some Kc 3 K′ ≥ K. Then K\K′ is the set of elements
that were refined going from K to K′. An error indicator shows discrete reliability when there
is a constant Cdr such that

‖uK′ − uK‖2H1
0 (Ω) ≤ Cdrη(uK,K \ K′)2 (K,K′ ∈ Kc with K′ ≥ K). (1.6.6)

♦

Remark 1.6.7. Discrete reliability is a strong property: We are able to bound the norm of
two functions whose difference is nonzero globally using a few pieces of local information. It is
no surprise that, in the process of proving discrete reliability, the proof of regular “continuous”
reliability usually follows (with the same constant). ♦

Theorem 1.6.8 ([46]). The above discrete reliability bound is satisfied for both the Melenk-
Wohlmuth and the equilibrated flux estimators described in §1.4.

27

Theorem 1.6.9 ([42, Thm. 11.7]). Let η be an a posteriori error indicator with efficiency con-
stant Ceff , and discrete reliability constant Cdr. Ensure that the marking parameter θ satisfies
θ2 < (Ceff(Cdr + 1))−1. If u ∈ As for some s > 0, then for the sequence of triangulations (Kk)k
produced by h-AFEM,

#Kk −#K0 . |u|1/sAs E(Kk)−1/s.

This statement contains a lot of information. Taking the parameter θ small enough, The-
orem 1.6.9 ensures that if for a best sequence of triangulations (KN)N the total error decays
algebraically with rate s, then this error decay also holds for the sequence (Kk)k produced
by h-AFEM. In other words, h-AFEM converges with the best possible rate allowed by the
polynomial degree.

Remark 1.6.10. It is even more remarkable that while the best sequence (KN)N is not
(necessarily) nested, the sequence (Kk)k produced by h-AFEM is, and it is still optimal! ♦

28

2. Theory of hp-adaptivity

In the previous chapter, we derived a framework for the theory of finite elements, and we
discussed its main brainchild: the h-adaptive finite element method. Moreover, we found that
under certain conditions, this algorithm converges with optimal (algebraic) rate, in that

approximation error norm ∼ N−s for the best possible s > 0,

where N equals the size of the triangulation. This N is (proportional to) the size of the linear
system one solves to find the Galerkin solution.

As it turns out, extending this framework allows us to devise algorithms with even better
convergence behaviour. Analogous to the previous chapter, we will focus our efforts on solving
the variational formulation of the Poisson problem on a polygonal domain in two dimensions.

Moreover, to focus on the central elements of the theory, we will omit any data oscillation
by assuming the forcing function f is piecewise smooth (e.g., polynomial) on the domain. It
must be noted that the theory also applies when the forcing function is arbitrary in L2(Ω).

An hp-adaptive finite element method generalizes classical finite elements in the way elements
can be refined: Instead of just allowing h-refinement by subdivision, we also allow p-enrichment
by expanding the local shape space. This allows for faster convergence rates than with pure
h-refinement.

In this chapter, we will describe the hp-adaptive FEM of Canuto et al. [15] from 2015,
driven by efforts from Binev [9]. With this new algorithm, it is possible to find exponential
convergence:

approximation error norm ∼ e−ηNτ
for some η, τ > 0,

where N denotes the size of the system. We will see later in this thesis that this exponential
decay is actually seen in practice.

Before the result of Stevenson [43] proving optimality of the strictly refining algorithm h-
AFEM, provably optimal h-adaptive finite element methods required the incidental use of a
coarsening routine in which the current triangulation is made less refined. Noting that each
(conforming) triangulation K induces a finite element search space V (K), a coarsening strategy
essentially throws away nearly redundant degrees of freedom to arrive at a subspace of V (K)
with favourable properties—near-best, for some definition of best. We will not dive into these
h-adaptive coarsening strategies, but rather use them as a stepping stone for hp-adaptivity.

The current state of provable hp-adaptive FEMs is comparable to what the landscape for
h-adaptivity looked like before Stevenson [43]: The hp-AFEM method proposed in [15] is prov-
ably optimal, but it requires intermediate “coarsening” steps between refinements. Coarsening
should be understood in the more general near-best sense: The induced finite element space
of such a “coarsened” triangulation has a dimensionality ≤ dimV (K). It is not necessarily a
subspace of V (K), but it does throw away ‘near’-redundancies, thereby making the triangula-
tion more efficient. A triangulation with a single triangle of degree 800 can, for example, be
“coarsened” to a near-best one with two triangles, each carrying degree 1.

Of course, such a near-best triangulation might very well increase the error norm (a little)
in return for the gain in efficiency, with efficiency understood in that the number of degrees
of freedom is decreased significantly. Making one or a couple of refinements (a Reduce step)
drives the error norm back down at the cost of efficiency, opening the door for another round of

29

near-best approximation. This juggling of two routines is the main characteristic of hp-AFEM,
which can be expressed in the following loop:

Refine→ · · · → Refine︸ ︷︷ ︸
Reduce

→ NearBest.

This chapter will first extend our definitions to suit hp-adaptivity in §2.1. In §2.2, we will
apply the near-best tree generation theory of appendix A to our finite element context by
building near-best triangulations. Section 2.3 will be devoted to an in-depth formulation of
the Reduce step. With this, all the puzzle pieces are in place to formulate hp-AFEM in §2.4,
and prove its convergence and optimality.

Near-best approximations

We will develop a near-best approximation with the following abstract interpretation. Let
(V,‖·‖) be a normed space. Assume we are looking for some unknown u ∈ V , and that any
approximation ũ of u carries a complexity C(ũ)—number of degrees of freedom. Naturally, the
lower this complexity is, the more desirable and efficient the approximation is.

Suppose our current approximation of u is ũ. Say we know it to be within some tolerance ε
from u, in that

‖u− ũ‖ ≤ ε.

Given δ > ε, our “coarsening” strategy computes an approximation m of the known ũ satisfying

‖m− ũ‖ ≤ δ and C(m) ≤ B inf
{v : ‖ũ−v‖≤δ}

C(v) (2.0.1)

for some constant B > 1. In other words, m is (modulo B) the most efficient approximation
of ũ within tolerance δ. Then, with

z := arg inf
{v : ‖u−v‖≤δ−ε}

‖u− v‖ ,

we see that

‖z − ũ‖ ≤‖z − u‖+‖u− ũ‖ < δ − ε+ ε = δ =⇒ BC(z) ≥ C(m),

hence m is (modulo B) more efficient than any approximation of u within tolerance δ − ε. In
other words, m has near-best complexity.

Usually, we will pick δ in terms of ε. For instance, take δ = 2ε. Given an approximation ũ
of u with ‖u− ũ‖ ≤ ε, our routine finds an approximation m of ũ for which

‖m− ũ‖ ≤ ε, ‖m− u‖ ≤ 3ε, C(m) ≤ BC(z) ∀z with ‖z − u‖ ≤ ε.

So in going from ũ to w, we sacrifice error norm (the upper bound 3ε for ‖m− u‖ exceeds the
one—being ε—for ‖ũ− u‖) but gain near-best complexity.

30

2.1. A framework for hp-adaptivity

In h-finite elements, it sufficed to restrict ourselves to triangulations that were conforming,
cf. Def. 1.2.13. The framework we will build for hp-finite elements however relies on interme-
diate triangulations of the domain that are nonconforming.

Definition 2.1.1. Recall the multiple-rooted infinite binary tree K defined in definition 1.5.5.
We will define an hp-element as being a tuple D := (KD, dD) ∈ K × N, and call dD its local
complexity. The associated finite element (KD,P(D),N (D)) will possess a shape space P(D)
of dimension h dD—usually polynomials of certain degree. Its set of local degrees of freedom
N (D) are unimportant to this chapter; example hp-elements will be studied in Chapter 3. ♦

An hp-element can have any local complexity dD ∈ N. However, in our two-dimensional
application, not every dD ∈ N corresponds with the dimensionality of a full polynomial space.
It is much easier to work with full polynomial spaces only, so we will overcome this discrepancy
through the following construction.

Definition 2.1.2. Recall that the dimensionality of the space of degree-p polynomials equals

dimPp(K) = #Ip =

(
p+ 2

2

)
where #Ip is the pth triangle number defined in (1.2.9). For any d ∈ N, the largest p such
that #Ip ≤ d is defined as

p(d) := arg max {p ∈ N0 : #Ip ≤ d} ;

the dimension of the space spanned by polynomials of this degree is then

bdc4 := #Ip(d), (d ∈ N).

The mapping bdc4 essentially floors d onto the set of triangle numbers.
The first few values of d, p(d), and bdc4 are given in Table 2.1.3. ♦

Quantity Values

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p(d) 0 0 1 1 1 2 2 2 2 3 3 3 3 3 4
bdc4 1 1 3 3 3 6 6 6 6 10 10 10 10 10 15

Table 2.1.3.: The first few values of d, p(d), and bdc4.

In our application, the hp-element D is a finite element on KD equipped with the polynomials
of degree pD := p(dD), having dimension bdDc4 h dD.

Definition 2.1.4. We will call a collection D of hp-elements an hp-triangulation when the set
of its element domains K(D) := {KD : D ∈ D} ∈ K is a triangulation of Ω, and a conforming
hp-triangulation when K(D) ∈ Kc is conforming. The set of all hp-triangulations is denoted
D, and the set of all conforming ones Dc. ♦

31

Definition 2.1.5. We define the broken hp-approximation space as

Vb(D) :=
{
v : Ω→ R : v|KD ∈ P(D) (D ∈ D)

}
(D ∈ D)

and the complexity of an hp-triangulation as

#D :=
∑
D∈D

dD. (2.1.6)

This complexity is h the dimensionality of Vb(D). ♦

Remark 2.1.7. We call Vb(D) broken because its functions need not be continuous between
two elements. If D is a conforming hp-triangulation of elements, then the space

V (D) := Vb(D) ∩H1
0 (Ω) =

{
f ∈ H1

0 (Ω) : f |KD ∈ PpD(KD), f |∂Ω = 0
}

coincides with the finite element space defined in Definition 1.2.15, by virtue of Theorem 1.2.16.
♦

Definition 2.1.8. Analogous to the h-case, we say that D̃ ≥ D—D̃ refines D—when Vb(D̃) ⊃ Vb(D),
or equivalently, the following two conditions hold:{

K(D̃) ≥ K(D),

dD̃ ≥ dD for all D ∈ D, D̃ ∈ D̃ with KD̃ ⊂ KD.
♦

2.2. Near-best approximations

In appendix A, we give an overview of the theory of near-best hp-subtree generation developed
by Binev [9]. For completeness, we repeat its main result here.

Take any abstract error mapping e : K × N → R : D = (KD, dD) 7→ eD that is decreasing
under h-refinement and p-enrichment. Then, define the global hp-error as the sum of local
errors

ED :=
∑
D∈D

eD.

The best N -term hp-adaptive approximation error σhpN is defined as

σhpN := inf
{D hp-triangulation : #D≤N}

ED.

Theorem 2.2.1 (See also Thm. A.3.12). The routine Near-best hp-subtree of Algorithm A.3.9
produces hp-triangulations DN of complexity #DN = N that provide near-best hp-approximation
in the sense that

EDN ≤
2N − 1

N − n+ 1
σhpn

for any n ≤ N . One can derive that the hp-error of DN is better than four times the error on
the best hp-triangulation with half the complexity.

In this section, we will apply Algorithm A.3.9 in a finite element setting. The error mapping
will, in our case, depend on the Galerkin solution uD on some refined hp-triangulation D.

Given some hp-element D := (KD, dD), it measures the squared distance between uD|KD
and its best approximation from PpD(KD). To ensure that this best approximation is unique,
we measure this distance in a special norm; see the following construction.

32

Definition 2.2.2. For a Banach space (V,‖·‖V), and a closed subspace W ⊂ V , we can define
a similarity

v ∼ w ⇐⇒ v − w ∈W (v, w ∈ V).

Let [v]W be the equivalence class of v. With this, we can define the quotient space V/W as

V/W :=
{

[v]W : v ∈ V
}
.

This is a linear space, even Banach, with norm∥∥[v]W
∥∥
V/W

:= min
w∈W
‖v − w‖V . ♦

Lemma 2.2.3. Consider the case V := H1(KD), and W := P0(KD). Then∥∥[v]W
∥∥
V/W

h |v|V (v ∈ V).

In other words, |·|V is a norm on V/W , equivalent to the quotient norm.

Proof. On the one hand, with w ∈W the minimizer of ‖v − w‖V , we see that

|v|V = |v − w|V ≤‖v − w‖V =
∥∥[v]W

∥∥
V/W

.

By Friedrichs’ inquality (cf. [13, (4.3.14)]),

‖v − v‖L2(KD) . |v|V where v :=

∫
KD

v,

so that on the other hand, we have∥∥[v]W
∥∥
V/W

= min
w∈W

√
|v − w|2V +‖v − w‖2L2(KD)

= min
w∈W

√
|v|2V +‖v − w‖2L2(KD)

≤
√
|v|2V +‖v − v‖2L2(KD)

. |v|V .

We are now ready to define the error functional.

Definition 2.2.4. Consider the quotient space H1(KD)/P0(KD) of equivalence classes of
H1(KD)-functions that differ by a constant. In light of the previous lemma, define the func-
tional

eD : H1(KD)→ R : v 7→|v − P pDv|2H1(KD) (2.2.5)

where P p is the orthogonal projector onto the subspace Pp(KD)/P0(KD). For fixed v, the
mapping D 7→ eD(v) is an error mapping in the earlier definition.

The quantity eD(v) then measures the squared best approximation error of v from PpD(KD)
in quotient norm. ♦

Remark 2.2.6. The notion of an error functional is completely unrelated to the error estima-
tors discussed in §1.4; the latter plays an important role in finite element analysis as a whole,
whereas the former is only useful inside the current near-best setting. ♦

33

Definition 2.2.7. See Definition A.1.3. The global hp-error functional induced by our error
functional is defined on H1

0 (Ω) and reads

ED : H1
0 (Ω)→ R : v 7→

∑
D∈D

eD(v)

which measures the squared distance between v and the space Vb(D). We will often refer to
ED(v) as the (squared) broken error with respect to v. ♦

Note that ED(v) implicitly defines a function m(v,D) ∈ Vb(D) being the piecewise polyno-
mial that minimizes (2.2.5) locally on each element. This function is, in general, not continuous.
We will look at explicitly constructing m in Chapter 4.

In light of (2.0.1) in the introduction of this chapter, we want to find, given a known
v ∈ H1

0 (Ω) and tolerance ε > 0, a near-best triangulation DNB with EDNB
(v) ≤ ε2.

Remark 2.2.8. Let us look at a short motivation for the coice of error functional. If
the minimizer m(v,DNB) was continuous (and vanished on ∂Ω), then EDNB

(v) would equal∥∥v −m(v,DNB)
∥∥2

H1
0 (Ω)

which is exactly the case described in the introduction. ♦

This near-best triangulation DNB is provided by Algorithm 2.2.12 below. It requires the
following result.

Proposition 2.2.9. For each fixed v, the error mapping eD(v) is decreasing under both p-
enrichment and h-refinement.

Proof. h-refinement: Let D1, D2 be children of D with dD1 = dD2 = dD. We see that

PpD(KD) ⊂
2∏

k=1

Pp
Dk

(KDk) =⇒ eD1(v) + eD2(v) ≤ eD(v).

p-enrichment: Let D′ be so that KD′ = KD and dD′ ≥ dD. Then

PpD(KD) ⊂ PpD′ (KD) =⇒ eD′(v) ≤ eD(v).

To make the near-best subtree generation algorithm useful in hp-adaptive finite element
context, we need to address a few issues.

1. Near-best hp-subtree of Algorithm A.3.9 produces hp-triangulations with a specified com-
plexity, whereas our desire is to get the hp-error below a certain tolerance;

2. Moreover, the algorithm produces hp-triangulations that are in general nonconforming,
whereas we desire a conforming hp-triangulation to find a Galerkin solution;

3. Lastly, it drives the broken hp-error ED down, whereas in finite element context, a result
in terms of the H1

0 (Ω)-seminorm is more natural.

We will handle each point separately.

34

2.2.1. Minimizing global hp-error and hp-NearBest

The following result offers a solution to the first point above.

Corollary 2.2.10 ([15, Cor. 3.1]). In light of the near-best result of Theorem 2.2.1, we know
that for each ε > 0, there is a smallest N ∈ N such that the hp-triangulation DNB := DN
produced by near-best hp-subtree of Algorithm A.3.9 satisfies

E
1/2
DNB
≤ ε.

Moreover, with B > 1, there is a b = b(B) ∈ (0, 1) such that

#DNB ≤ B#D̃ ∀D̃ with E
1/2

D̃ ≤ bε. (2.2.11)

In words, the broken error is less than the prescribed tolerance ε, and its complexity is
bounded by B times the complexity of any hp-triangulation that realizes a tolerance bε.

Proof. The first property is satisfied by definition of N . We will show that the second condition
of (2.2.11) holds. Define

b :=

√
1

2

(
1− 1

B

)
.

If N = 1, then any D̃ must have #DNB = 1 ≤ B#D̃ so it holds trivially. Assume N > 1; we
will proceed by contradiction.

Suppose there is a D̃ ∈ D with ED̃(v) ≤ b2ε2, but N = #D > B#D̃. Then, take n := #D̃.
Note that N > Bn, so

1− 1

B
<
N − n
N

.

Moreover, n ≤ N − 1 even, so that for the hp-triangulation DN−1 in the previous iteration,

EDN−1
≤ 2(N − 1)

N − 1− n+ 1
σhpn ≤

2(N − 1)

N − n
ED̃

≤ 2(N − 1)

N − n
1

2

(
1− 1

B

)
ε2 =

N − 1

N − n

(
1− 1

B

)
ε2

<
N − 1

N − n
N − n
N

ε2 =
N − 1

N
ε2 < ε2.

In other words, the first property is even satisfied for DN−1. But we assumed N was the
first iteration for which it was satisfied; therefore, any D̃ ∈ D with ED̃(v) ≤ b2ε2 must have

#DNB ≤ B#D̃.

Algorithm 2.2.12 (hp-NearBest). In light of the above corollary, define hp-NearBest as the
algorithm that produces the near-best hp-triangulation DNB given v ∈ H1

0 (Ω) and ε > 0. ♦

2.2.2. Smallest conforming refinement

We prefer to construct our Galerkin approximations on conforming triangulations, but hp-
NearBest offers us a triangulation that is not necessarily conforming. In light of this, let us
extend the construction of the smallest conforming refinement to hp-context.

35

Definition 2.2.13. For any hp-triangulation D ∈ D, let

C(D) := arg min
{

#D̃ : Dc 3 D̃ ≥ D
}
∈ Dc

be its smallest conforming refinement. This C(D) can be found by applying MakeConform
from Algorithm 1.5.17 to the h-triangulation K(D), and at any moment an hp-element D is
subdivided, endowing both its children with local complexity dD. ♦

In Theorem 1.5.16, we saw that the smallest conforming refinement C(K) ∈ Kc of an h-
triangulation K ∈ K satisfies #C(K) . #K. In our hp-case, though, no such bound exists; see
the following example.

Example 2.2.14. Take the domain Ω := (0, 1)2, and consider the sequence of nonconform-
ing hp-triangulations (DN)N depicted in the left of Figure 2.2.15. We assign to the ele-
ment DN ∈ DN in the bottom-left corner a local complexity dDN := N , and equip each
D ∈ DN \ {DN}—dotted in the figure—with unit local complexity. Each DN+1 is created
from DN by two recursive bisections of the dotted triangle in the bottom-right corner. The
total number of elements in DN with unit complexity is 2N , so #DN :=

∑
D dD = 3N .

The smallest conforming refinement C(DN) of DN is created by applying 2N − 1 recursive
bisections to the non-dotted triangle in the bottom-right corner; see the right of Figure 2.2.15.
In this process, 2N elements appear in place of DN , all of complexity N . Therefore,

C(DN) = 2N + 2N2 =⇒ #C(DN)

#DN
=

2(N + 1)

3

which tends to infinity for N →∞. We conclude that, in general,

#C(D) 6. #D (D ∈ D).

This is one of the main open problems of the current algorithm: We cannot control the
increase in complexity going from a nonconforming output triangulation emanating from hp-
NearBest to its smallest conforming refinement used in the next finite element step. ♦

D1

C(D1)#D1 = 3

D2

C(D2)#D2 = 6 #C(D1) = 4 #C(D2) = 12

Figure 2.2.15.: Left: First two hp-triangulations of Ω := (0, 1) in the sequence (DN)N of Ex-
ample 2.2.14. The element DN is of complexity N ; the dotted area contains
elements of local complexity 1. Right: Smallest conforming refinements of the
two hp-triangulations on the left.

36

2.2.3. Relating the broken norm and energy norm

The routine hp-NearBest is near-best at reducing the broken error on some triangulation that
is not necessarily conforming. However, in the finite element context, we desire a result in
terms of the H1

0 (Ω)-seminorm with respect to a conforming triangulation. We end this section
with a remarkable result that relates the two.

Theorem 2.2.16 ([15, Thm. 5.1]). Given is v ∈ H1
0 (Ω), and some hp-triangulation D ∈ D

with smallest conforming refinement C(D). For D ∈ D, define ‖pD‖∞ := maxD∈D pD. Then
for the global hp-error induced by the error functional (2.2.5), the following holds:

inf
w∈V (C(D))

‖v − w‖H1
0 (Ω) ≤ CB(D)ED(v)1/2 (v ∈ H1

0 (Ω)) (2.2.17)

with
CB(D) h (1 + log‖pD‖∞)3/2.

Remark 2.2.18. Ideally, we would have liked the constant CB(D) to be independent of D in
the sense that

CB := sup
D∈D

CB(D) <∞.

Regrettably, no such bound has been found yet, but we are quite close. The above remark-
able result shows that CB(D) increases just logarithmically with the largest polynomial degree
present in D. ♦

2.3. The routine Reduce

In the introduction of this chapter, we already formulated the properties of an error reduction
routine. More formally, we will derive a routine with the following description.

Reduce takes a conforming hp-triangulation D ∈ Dc, and a reduction factor ρ. It produces a
conforming triangulation Dc 3 D ≥ D with∥∥u− uD∥∥H1

0 (Ω)
≤ ρ‖u− uD‖H1

0 (Ω) . (2.3.1)

We will construct Reduce using the a posteriori error estimators described in §1.4. We make
the dependency of local indicators on the triangulation D ∈ Dc explicit by writing ηD(v,M)
for M⊂ D. Recall that our model problem has no data oscillation, so any oscillation term in
the error estimator vanishes.

Reduce is akin to h-AFEM in structure, in that we iterate

SOLVE→ ESTIMATE→ MARK→ REFINE

until (2.3.1) is satisfied. See Algorithm 2.3.2.

2.3.1. Sufficient properties of an error estimator

To control the number of iterations M(ρ) required for this reduction factor, we require a few
properties of our error estimator.

37

Require: θ ∈ (0, 1]
1: function Reduce(ρ ∈ (0, 1], D ∈ Dc)
2: compute M := M(ρ) as in Thm. 2.3.8;
3: D0 := D;
4: // SOLVE

5: compute uD0 ;
6: for m = 1, . . . ,M do
7: // ESTIMATE

8: compute
{
ηDm−1(uDm−1 , D) : D ∈ Dm−1

}
;

9: // MARK

10: mark a smallest Mm−1 ⊂ Dm−1 with
11: ηDm−1(uDm−1 ,MDm−1) ≥ θηDm−1(uDm−1 ,Dm−1);
12: // REFINE

13: Dm := D̃(Mm−1);
14: // SOLVE

15: compute uDm ;

16: return D := DM .

Algorithm 2.3.2: The Reduce routine used in hp-AFEM.

Definition 2.3.3. An error estimator η is stable in its first argument when there is a constant
Cstab(D) for D ∈ Dc with∣∣ηD(v,D)− ηD(w,D)

∣∣ ≤ Cstab(D)‖v − w‖H1
0 (Ω) , (v, w ∈ V (D)).

In words, it means that small perturbations in the input lead to small perturbations in the
output. ♦

Definition 2.3.4. An error estimator satisfies error reduction upon refinement when there is
a γ < 1 such that for any conforming hp-triangulation D ∈ Dc, and for any set of marked
elements M⊂ D, the following holds.

There is an error-reducing refinement DER := DER(D,M) ∈ Dc of D with #DER . #D such
that

η2
DER

(uD,MER) ≤ γη2
D(uD,M), η2

DER
(uD,DER \MER) ≤ η2

D(uD,D \M), (2.3.5)

where
MER :=

{
D̃ ∈ DER : ∃D ∈M s.t. KD̃ ⊂ KD

}
is the set of elements that were refined in going from D to DER. ♦

This definition contains a lot of information. In words, it compares the error indications on
two triangulations, one a specific refinement of the other. On a set of marked elements, we
require the indicated error to be strictly reduced (by a factor γ), and on the complement of
this set, we don’t want the indicated error to increase. Note that all indicated errors are with
respect to the Galerkin solution of the coarser triangulation.

Definition 2.3.6. Select an error estimator η that is efficient and satisfies error reduction upon
refinement. With θ from Reduce, and γ from (2.3.5), define γ̃ := (1 − θ) + γθ. For D ∈ Dc,

38

and with Ceff(D) the efficiency constant of the error estimator η, we define the (squared) total
error as

E2
D(uD) :=‖u− uD‖2H1

0 (Ω) +
1−
√
γ̃

Ceff(D)
η2
D(uD,D).

This total error is equivalent to the approximation error norm, in that

‖u− uD‖2H1
0 (Ω) ≤ E

2
D(uD) ≤ 2‖u− uD‖2H1

0 (Ω) . ♦

Lemma 2.3.7 ([15, Prop. 2.2]). Assume that η is reliable, efficient, stable, and satisfies error
reduction upon refinement. Then iterands produced inside Reduce show contraction for the
total error, in that

EDm(uDm) ≤ κEDm−1(uDm−1), κ = κ(Dm,Dm−1) :=

√
1− (1−

√
γ̃)2

2Ceff(Dm)Crel(Dm−1)
.

Theorem 2.3.8 ([15, Prop. 2.2]). Assume that η is reliable, efficient, stable, and satisfies
error reduction upon refinement. If the efficiency resp. reliability constants of η are uniformly
bounded in that

Ceff := sup
D∈Dc

Ceff(D) <∞, Crel := sup
D∈Dc

Crel(D) <∞, (2.3.9)

then the number M = M(ρ) of iterations required to satisfy (2.3.1) inside Algorithm 2.3.2
satisfies M(ρ) = O(log ρ−1), and is independent of D. Moreover, for the output triangulation,
#D . #D.

Proof. In light of the previous lemma, when (2.3.9) holds, we can bound κ(Dm,Dm−1) by the
independent quantity

κ(Dm,Dm−1) ≤ κ0 :=

√
1− (1−

√
γ̃)2

2CeffCrel
.

Given M—the number of iterations in Reduce—the lemma yields∥∥u− uD∥∥H1
0 (Ω)

=
∥∥u− uDM∥∥H1

0 (Ω)
h EDM (uDM)

≤ κM0 ED0(uD0) h κM0
∥∥u− uD0

∥∥
H1

0 (Ω)

= κM0 ‖u− uD‖H1
0 (Ω) .

In order to satisfy the reduction property, we want κM0 ≤ ρ. This means that

κ−M0 ≥ ρ−1 =⇒ −M ≤ logκ0(ρ−1) =
log ρ−1

log κ0

=⇒ M ≥ log ρ−1

− log κ0
.

We choose the smallest such M , resulting in

M =

⌈
log ρ−1

− log κ0

⌉
= O(log ρ−1).

This M depends on ρ and κ0 only, and is hence independent of D. Lastly, by error reduction
upon refinement, we see that

#D = #DM . #DM−1 . · · · . #D0 = #D.

39

We continue this section looking at how the Melenk-Wohlmuth error estimator fares against
these properties, and finish it looking at a novel idea using equilibrated fluxes.

2.3.2. Properties of the Melenk-Wohlmuth error estimator

We already saw in Theorem 1.4.13 that the Melenk-Wohlmuth error estimator is, under the
comparability assumption of Assumption 1.4.12, both reliable and efficient. In terms of local
complexity, this assumption can be restated as

∃ν > 1 s.t.
dD
dD′
≤ ν (D,D′ ∈ D, KD ∩KD′ 6= ∅), (2.3.10)

meaning that complexities of adjacent elements should be comparable.

Theorem 2.3.11 ([15, Cor. 5.1]). Under Assumption 1.4.12, the Melenk-Wohlmuth a poste-
riori error estimator is stable, with Cstab(D) = Ceff(D)1/2.

Consider (2.3.10). Realizing this assumption is not trivial. For instance, the sequence
(C(DN))N found in Example 2.2.14 violates this assumption already. We can mend this issue
by tightening the definition of conforming a little.

Fixing some ν ≥ 1, let D̃c denote the set of conforming hp-triangulations that satisfy the
comparability assumption. For each D ∈ Dc, there is a D̃ := D̃(D) ∈ D̃c with K(D̃) = K(D)
and D̃ ≥ D, found by increasing local complexities until the quotient is bounded from above
by ν.

In light of the above, using the Melenk-Wohlmuth error estimator requires us to work with
D̃c instead of Dc. Defining the mapping C̃ := D̃ ◦ C, all instances of Dc should be replaced by

by D̃c, and C by C̃. Obviously, D̃(D) can be constructed such that
∥∥∥pD̃(D)

∥∥∥
∞

=‖pD‖∞ so that

the result from Theorem 2.2.16 still holds.
Unfortunately, there is no uniform bound on #D̃(D)

#D across all D ∈ Dc.

Example 2.3.12. Let ν ≥ 1 be arbitrary. Consider the sequence of hp-triangulations (DN)N
where each domain ΩN is a regular (N + 1)-polygon, and DN is the set of N + 1 triangles
that triangulate ΩN . Each element is endowed with local complexity 1, except for one single
element DN carrying complexity N . Note that every element has nonempty intersection with
DN .

See Figure 2.3.13. We find D̃(DN) by raising each unit local complexity to dN/νe—this
makes the local complexities comparable. Then #DN = 2N , and #D̃(DN) = N +N · dN/νe.
Therefore, their quotient

#D̃(DN)

#DN
=
N(1 + dN/νe)

2N
=

1

2

(
1 + dN/νe

)
tends to infinity for N →∞.

This is another open problem. On top of not being able to control the complexity of a
smallest conforming refinement (see Example 2.2.14), we cannot control the complexity of the
smallest comparable refinement D̃(D) uniformly over Dc. ♦

Definition 2.3.14. For the Melenk-Wohlmuth error estimator, we can define a suitable error-
reducing refinement DER given M⊂ D as follows.

Perform two recursive bisections on each D ∈ M, denoting the resulting hp-triangulation
with D(M), then take its smallest conforming refinement C(D(M)) =: DER. See Figure 2.3.15
for an example. ♦

40

compl. 1

DN

compl. N

compl. 1

N elements

DN

DN 7→ D̃(DN) compl.
dN/νe

DN

compl. N

compl.
dN/νe

N elements

D̃(DN)

Figure 2.3.13.: Visual aid for Example 2.3.12. Two triangulations of the regular (N + 1)-
polygon into N + 1 triangles. Left: Triangulation DN with N elements of
unit complexity, and one element DN having local complexity N . Right: the
smallest refinement of DN that meets the requirement in (2.3.10).

M

DD(M) D(M)

MER

DER(M) = C(D(M))

Figure 2.3.15.: Example of the procedure described in Definition 2.3.14.

Proposition 2.3.16 ([15, Prop. 5.3]). The Melenk-Wohlmuth error estimator satisfies error
reduction upon refinement with γ = 1

2 .

Proof. The second condition of (2.3.5) holds trivially. We will prove the first condition. Recall
that the MW-error estimator is defined as

ηMW(v,D)2 :=
h2
D

p2
D

∥∥∥P (pD−1)f +4uD
∥∥∥2

L2(KD)
+

∑
e⊂∂KD\∂Ω

|e|
2pe

∥∥J∇uKKe
∥∥2

L2(e)
, (D ∈ D).

Let’s look at the definition ofMER. Each D̃ ∈MER is created from a D = D(D̃) ∈M, and
satisfies hD̃ = hD/2. For the polynomial degrees, the substitution of C by C̃ (cf. Example 2.3.12)
implies that pD̃ ≥ pD.

Each edge ẽ on MER falls in one of two classes: It is either internal to or on the boundary
of some element D ∈ M. In the former case, its contribution to the local error indication
must vanish—uD is a polynomial on D. In the latter case, ẽ is exactly one half of some edge
e = e(ẽ) ⊂ D; therefore, hẽ = he/2 and pẽ ≥ pe.

41

Noting that ‖v‖2L2(A∪B) =‖v‖2L2(A) +‖v‖2L2(B), we see that

η2
DER

(uD,MER) =
∑

D̃∈MER

h2
D̃

p2
D̃

∥∥∥P (pD̃−1)f +4uD
∥∥∥2

L2(KD̃)
+
∑
ẽ

hẽ
2pẽ

∥∥J∇uDKe
∥∥2

L2(ẽ)

≤ 1

4

∑
D̃∈MER

h2
D

p2
D

∥∥∥P (pD−1)f +4uD
∥∥∥2

L2(KD̃)
+

1

2

∑
ẽ

he
2pe

∥∥J∇uDKe
∥∥2

L2(ẽ)

=
1

4

∑
D∈M

h2
D

p2
D

∥∥∥P (pD−1)f +4uD
∥∥∥2

L2(KD)
+

1

2

∑
e

he
2pe

∥∥J∇uDKe
∥∥2

L2(e)

≤ 1

2
η2
D(uD,M),

so the first part of (2.3.5) holds true with γ = 1
2 .

It must be noted that the Melenk-Wohlmuth error estimator does not satisfy the conditions
of Theorem 2.3.8 which shows boundedness of M inside Reduce. In Corollary 1.4.14, we saw
that the efficiency constant satisfies Ceff(D, ε) h‖pD‖2+2ε

∞ for any ε > 0, which of course has in-
finite supremum over Dc. As a result, we cannot bound the number of iterations independently
of D, but we can find something quite close.

Lemma 2.3.7 tells us that the total error is reduced by a factor κ in each iteration of Reduce.
This κ depends on the efficiency constant Ceff(D, ε), but it is constant within a single call to
Reduce. Viewing this κ as a function of Ceff , we see through a Taylor expansion that

1

− log(κ)
= Ceff(D, ε) + h.o.t. h‖pD‖2+2ε

∞ .

Looking at the proof of Theorem 2.3.8, we conclude that for the number M of iterations
required, it holds that

M h
log(ρ−1)

− log(κ)
h log(ρ−1)‖pD‖2+2ε

∞ .

The following example shows that this result is unsatisfactory; the computational cost can
grow exponentially in the total number of degrees of freedom.

Example 2.3.17. Take a triangular domain K, and define the hp-triangulation DN on this
domain through DN :=

{
(K,N)

}
. For simplicity, choose the Dörfler marking parameter θ to

be 1. Then
∥∥pDN∥∥∞ ' √N , so that

M ' log(ρ−1)N1+ε.

The triangulation DN that Reduce outputs for input DN is found by M uniform bisections of
all triangles, yielding a total of 2M triangles in DN , each carrying a local complexity of N .
Therefore,

#DN = N2M ' N2log(ρ−1)N1+ε
,

which is obviously exponential in N . The result is that when solving for the Galerkin solution
on DN , our direct solver, requiring in the order of M1.5 flops with M the size of the global
stiffness matrix, then requires a number of flops that grows exponentially in N . ♦

42

2.3.3. Equilibrated fluxes error estimator

Most recently, a result by Canuto et al. [14] improved on the results presented above. Instead
of error reduction through adaptive h-refinement based on the Melenk-Wohlmuth estimator,
they propose reducing the error using the p-robust equilibrated fluxes error estimator through
uniform p-refinement.

Starting out with a Galerkin solution up of uniform degree p, they investigate the lowest
value q(p) necessary to achieve the reduction property∥∥∥u− up+q(p)∥∥∥

H1
0 (Ω)
≤ ρ
∥∥u− up∥∥H1

0 (Ω)

where ρ is the desired reduction factor, and up+q(p) is the Galerkin solution of uniform degree
p + q(p). Using Galerkin orthogonality, one can restate this problem, now hoping to find
p-robust saturation in that

sup
p∈N

∥∥u− up∥∥H1
0 (Ω)∥∥∥up − up+q(p)∥∥∥
H1

0 (Ω)

<∞.

Their computational results suggest that q(p) := dλpe for some λ > 0 yields p-robust saturation.
Contrastingly, no p-robust saturation is observed for q(p) = q when q is independent of p,
although for q(p) = 4, the quotient above grows very slowly in p; cf. [14, Tbl. 10].

Remark 2.3.18. In terms of computational cost, this method of p-enrichment is much more
desirable than the h-refinement scheme above. Noting that up is found by solving a system of
size ' p2 ' N4, we see that the computational cost of solving for up+dλpe is polynomial in N .
This is in contrast with the earlier result of possibly exponential growth (see Example 2.3.17).

♦

2.4. hp-AFEM

With the algorithms hp-NearBest and Reduce in place, we can formulate the hp-adaptive finite
element algorithm. Recall that the defining property of these two algorithms is the following.

hp-NearBest takes as input ε > 0 and v ∈ H1
0 (Ω), and produces a triangulation DNB ∈ D that

is a near-best approximation of v in the following exact sense:{
EDNB

(v)1/2 ≤ ε,
∃0 ≤ b ≤ 1 ≤ B s.t. #DNB ≤ B#D̃ ∀D̃ ∈ D with ED̃(v)1/2 ≤ bε.

Reduce takes an hp-triangulation D ∈ Dc, and a reduction factor ρ. It produces a triangulation
Dc 3 D ≥ D with ∥∥u− uD∥∥H1

0 (Ω)
≤ ρ‖u− uD‖H1

0 (Ω) .

Inside hp-AFEM, the input triangulation of hp-NearBest will be the current finite element
approximation. The input to Reduce will be the smallest conforming refinement of the output
of hp-NearBest. The hp-AFEM algorithm can now be formulated—see Algorithm 2.4.1.

We will now look at some of the properties of hp-AFEM.

43

Require: µ ∈ (0, 1), ω ∈
(
CL
b ,∞

)
1: procedure hp-AFEM(u0 ∈ H1

0 (Ω), ε > 0)
2: find ε0 > 0 with ‖u− u0‖H1

0 (Ω) ≤ ε0.
3: for all k ∈ N do
4: D∗k := hp-NearBest(uk−1, ωεk−1);
5: Dk := Reduce(µ

1+CB(D∗k)ω , C(D
∗
k));

6: uk := uDk ;
7: εk := µεk−1;
8: if εk < ε then
9: return

Algorithm 2.4.1: The hp-adaptive finite element algorithm hp-AFEM.

Definition 2.4.2. The global error functional ED is Lipschitz continuous when

∃CL > 0 s.t.
∣∣∣ED(w)1/2 − ED(v)1/2

∣∣∣ ≤ CL‖w − v‖H1
0 (Ω) (D ∈ D, v, w ∈ H1

0 (Ω)). (2.4.3)

♦

Lemma 2.4.4. The global error functional induced by (2.2.5) is Lipschitz continuous with
CL = 1.

Proof. First, we will show that∣∣∣eD(v)1/2 − eD(w)1/2
∣∣∣ ≤|v − w|H1(KD)

(
D ∈ D, v, w ∈ H1

0 (Ω)
)
.

Recall that
eD(v) := |v − P pDv|2H1(KD) ,

where P p is the orthogonal projector onto Pp(KD)/P0(KD). By Lemma 2.2.3, |·|H1(KD) is a

norm on the space H1(KD)/P0(KD), so that the reverse triangle inequality holds. Combining
this with the fact that I − P pD is also an orthogonal projector, we get∣∣∣eD(v)1/2 − eD(w)1/2

∣∣∣ =
∣∣∣|v − P pDv|H1(KD) −|w − P

pDw|H1(KD)

∣∣∣
≤
∣∣(v − w)− P pD(v − w)

∣∣
H1(KD)

=
∣∣(I − P pD)(v − w)

∣∣
H1(KD)

≤|v − w|H1(KD) .

With this result, the proof follows easily:

∣∣∣ED(v)1/2 − ED(w)1/2
∣∣∣ =

∣∣∣∣∣∣
√∑

D

eD(v)−
√∑

D

eD(w)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
D

(
eD(v)1/2 − eD(w)1/2

)2

∣∣∣∣∣∣
1/2

≤

∣∣∣∣∣∣
∑
D

|v − w|2H1(KD)

∣∣∣∣∣∣
1/2

=‖v − w‖H1
0 (Ω) .

44

Theorem 2.4.5 ([15, Thm. 2.1]). Assume (2.4.3). Then, for the sequences (uk)k and (D∗k)k
produced by Algorithm 2.4.1, we have

‖u− uk‖H1
0 (Ω) ≤ εk (k ≥ 0),

ED∗k(u)1/2 ≤ (ω + CL)εk−1 (k ≥ 1),

#D∗k ≤ B#D ∀D ∈ D with ED(u)1/2 ≤ (bω − CL)εk−1 (k ≥ 1).

(2.4.6)

In words, Theorem 2.4.5 tells us that hp-AFEM is instance optimal for reducing ED(u) over
D ∈ D. It also shows linear convergence of the Galerkin solutions to the real solution u in
terms of the number of iterations. By virtue of the equality εk = µkε0, we can break out of
the loop after the desired tolerance εtol has been achieved.

To prove this theorem, the following lemma is useful.

Lemma 2.4.7. Given as input a conforming triangulation D ∈ Dc, hp-NearBest produces a
near-best hp-triangulation DNB = DNB(D) for which∥∥∥u− uC(DNB)

∥∥∥
H1

0 (Ω)
≤‖u− uD‖H1

0 (Ω) + CB(DNB)EDNB
(uD)1/2.

Proof. The result follows from Galerkin orthogonality and the triangle inequality:∥∥∥u− uC(DNB)

∥∥∥
H1

0 (Ω)
= inf

w∈V(C(DNB))
‖u− w‖

≤‖u− uD‖H1
0 (Ω) + inf

w∈V(C(DNB))
‖uD − w‖

≤‖u− uD‖H1
0 (Ω) + CB(DNB)EDNB

(uD)1/2.

Proof (of the theorem). The first statement holds, by construction, for k = 0. Now assume
that it holds for k−1, in that‖u− uk−1‖H1

0 (Ω) ≤ εk−1. Then, after the kth call to hp-NearBest,
the previous Lemma ensures that∥∥∥u− uC(D∗k)

∥∥∥
H1

0 (Ω)
≤‖u− uk−1‖H1

0 (Ω) + CB(D∗k)ED∗k(uk−1)1/2

≤ εk−1 + CB(D∗k)ED∗k(uk−1)1/2

≤ (1 + CB(D∗k)ω)εk−1.

The subsequent call to Reduce then ensures that

‖u− uk‖H1
0 (Ω) ≤

µ

1 + CB(D∗k)ω

∥∥∥u− uC(D∗k)

∥∥∥
H1

0 (Ω)
≤ µεk−1 = εk.

Then, by the property of hp-NearBest and (2.4.3):

ED∗k(u)1/2 ≤ ED∗k(uk−1)1/2 + CL‖u− uk−1‖H1
0 (Ω) ≤ (µ+ CL)εk−1 (k ≥ 1).

Let D ∈ D with ED(u)1/2 ≤ (bω − CL)εk−1. Then again by Lipschitz continuity,

ED(uk−1)1/2 ≤ (bω − CL)εk−1 + CLεk−1 = bωεk−1,

so by the near-best property, #D∗k ≤ B#D.

45

Remark 2.4.8. Algorithm 2.4.1 requires a reduction factor ρ := µ/((1 + CB(D∗k))ω) that
depends on CB(D∗k). Therefore, by CB(D) ' (1 + log‖pD‖∞)3/2, the number of iterations
required grows (very slowly) whenever the maximal polynomial degree increases. ♦

We end this section with a few notes on the convergence speed of hp-AFEM. In the current
context, the near-best hp-adaptive approximation error σhpN is a functional taking v ∈ H1

0 (Ω).

Corollary 2.4.9 (Algebraic decay). If σhpN (u)1/2 decays algebraically, in that

sup
N
σhpN (u)1/2N s <∞ for some s > 0,

then the sequence of broken errors ED∗k(u)1/2 also decays algebraically, and even with optimal
rate.

Proof. Write σN := σhpN (u) and ED := ED(u). Define

Q := sup
N
σ

1/2
N N s <∞.

Then, by this property, for each ε > 0 there is a smallest Nε ∈ N such that σ
1/2
Nε
≤ ε. This

means that
Q ≥ (Nε − 1)sσ

1/2
Nε−1 > (Nε − 1)sε =⇒ Nε − 1 < Q1/sε−1/s.

Therefore we must have
Nε . Q

1/sε−1/s h ε−1/s.

The near-best property ensures that for the sequence of triangulations (D∗k)k produced by hp-

AFEM, we have E
1/2
D∗k
≤ (ω+CL)εk−1, and #D∗k ≤ B#D for any D with E

1/2
D ≤ (bω−CL)εk−1;

choose the D with smallest complexity. For this D, by the previous result,

#D . [(bω − CL)εk−1]−1/s h ε
−1/s
k−1

which implies that

(#D∗k)sE
1/2
D∗k
≤ (B#D)s(ω + CL)εk−1 . (Bε

−1/s
k−1)sεk−1 = Bsε−1

k−1εk−1 = Bs.

In other words, we find (#D∗k)sE
1/2
D∗k
. Bs, with the constants inside “.” independent of k.

Therefore
sup
k

(#D∗k)sE
1/2
D∗k
. Bs <∞

so that the broken errors decay algebraically with rate s.

The previous result was reminiscent of the algebraic decay of h-AFEM. In our hp-case, we
can do even better.

Corollary 2.4.10 (Exponential decay [15, Rem. 2.2]). Let σhpN (u)1/2 decay exponentially, in
that

sup
N

{
σhpN (u)1/2eηN

τ
}
<∞ for some η, τ > 0.

46

Then an approach similar to the above shows that

sup
k

{
eB
−τη(#D∗k)τED∗k(u)1/2

}
<∞.

In other words, when σhpN (u)1/2 decays exponentially with parameters (η, τ), then the sequence
of broken errors produced by hp-AFEM does as well, with parameters (η̃, τ), where η̃ = B−τη.

We will see in Chapter 5 that this exponential decay is observed in practice.

Remark 2.4.11. The exponential decay of the error norms found above is in terms of the
number of degrees of freedom. Let us consider the behaviour in terms of computational cost.
For now, forget about cost involved in the coarsening step, and rather focus on the computa-
tional cost of the error reduction step. If this reduction requires F = CNk flops, with k > 1
and C > 0, then N = (F/C)1/k. With this, an exponential decay rate exp(−ηN τ) in terms of
the complexity results in a rate

exp
(
−(ηC−τ/k)F τ/k

)
in terms of the number of flops. This is still exponential (albeit with a suboptimal exponent
τ/k). Therefore, exponential convergence with respect to computational efoort can be expected
using equilibrated fluxes (cf. Remark 2.3.18). In light of Example 2.3.17, this cannot be
expected for the Melenk-Wohlmuth reduction strategy. ♦

Conclusion

In this chapter, we studied a novel hp-adaptive finite element method. In Corollary 2.4.10, we
saw that under mild circumstances, this hp-AFEM procedure exhibits exponential decay of the
approximation error in terms of the size of the triangulations.

The results of this chapter are not fully satisfactory, for a multitude of reasons.
Firstly, the complexity of the smallest conforming refinement of an hp-triangulation D cannot

be bounded in terms of the complexity of D itself; see Example 2.2.14.
Moreover, the coarsening routine hp-NearBest measures error in the broken norm as opposed

to the H1(Ω)-seminorm. This introduces some problems, most notably the loss of a logarithmic
factor; see §2.2.3.

Lastly, the choice of error estimator (and with it, the implementation of Reduce) depends on
an assumption that introduces another unbounded quotient; see Example 2.3.12. A different er-
ror reduction strategy was recently introduced and uses equilibrated fluxes (see Remark 2.3.18),
but its implementation is very cumbersome.

Most of these issues are not actually observed in practice. This invites further analysis:
Maybe it is possible to show that the issues don’t appear when confining our view to a smaller
class of boundary value problems.

47

3. Bases for the finite element space

In §1.2.2, we derived a method for constructing the Galerkin solution on a given triangulation.
In the process, we assumed having a global basis of the finite element space. In this chapter,
we will discuss the construction of such a global basis. We will start off by assuming Lagrange
elements and the global basis of the Galerkin space it induces, and identify why it is ill-suited
for hp-adaptivity.

We will then introduce hierarchical bases and argue why they are a natural choice, before
showing some of the implications of using local bases to induce a global basis. We will continue
by giving an example of a widely used hierarchical basis that fares well with respect to these
properties. Our final section will be devoted to studying a fairly novel application of Bernstein-
Bézier polynomials within an hp-adaptive finite element context.

3.1. Lagrange elements

In an h-adaptive setting, one usually chooses a Lagrange element (cf. Example 1.2.11) as the
foundation for a finite element method. Choose some degree p, and recall that on each triangle
K in a conforming triangulation K, the local degrees of freedom were defined as the point
evaluations on the set of domain points Dp(K), defined by (cf. Definition 1.2.5)

Dp(K) := {vα : α ∈ Ip} , Ip :=
{
α ∈ N3

0 : |α| = p
}
.

Any function v|K ∈ Pp(K) is completely determined by its point evaluations on these domain
points, so necessarily, each v in our finite element space V (K) must be completely determined
by its point evaluations on their union ∪K∈KDp(K). In fact, it is overdetermined by this
set: v ∈ V (K) ⊂ H1

0 (Ω) must vanish on ∂Ω, so it is even completely determined by point
evaluations on the set

L(K) :=
⋃
K∈K
Dp(K) \ ∂Ω.

This gives rise to the set of global degrees of freedom

V (K)′ ⊃ N (K) :=
{
N : V (K)→ R : v 7→ v(v) : v ∈ L(K)

}
.

The following results show the role of the global degrees of freedom.

Proposition 3.1.1. Take a conforming triangulation K, and endow each triangle with a La-
grange element of degree p. Then the set of global degrees of freedom N (K) is a basis for
V (K)′.

Corollary 3.1.2. Given a conforming triangulation K, and on each triangle, a Lagrange
element of degree p. The set ΦLagr

K :=
{
φi : 1 ≤ i ≤ dimV (K)

}
⊂ V (K) dual to N (K) (in that

Ni(φj) = δij) is a global basis for V (K).

Proposition 3.1.3. The global basis functions φ ∈ ΦLagr
K have local support.

Proof. There is a bijection between L(K) and ΦLagr
K , so each basis function is associated with

a point. Its support is equal to the union of all triangles that contain this point.

48

See Figure 3.1.4. The basis functions fall in one of three categories. If the function φv is
associated with a vertex of some triangle, then the number of triangles in its support is exactly
the valence of this vertex. When the function φe is associated with an edge between two
triangles, then it must vanish outside the union of these two. Lastly, if φf is associated with
some point in the interior of a triangle, then the support must be the single triangle containing
this point.

•φf

supp(φf)

•φe

supp(φe)

•φv

supp(φv)

Figure 3.1.4.: Three example functions from the global Lagrange basis ΦLagr
K . Each basis func-

tion is associated with a specific point inside the domain. The support of this
function is equal to the union of all triangles that contain this point.

We see that, in the h-adaptive case, this basis works beautifully. Let us look at an example
of why this basis is not well-suited for the hp case.

Example 3.1.5. Imagine a triangulation K of the unit square Ω := (0, 1)2 into two triangles
K1 and K2. Equip K1 with the linear polynomials P1(K1), and K2 with quadratics P2(K2).
On the interface e := K1 ∩K2 between these two triangles, these spaces do not agree:

dimP1(K1)|e = 2 6= 3 = dimP2(K2)|e.

The finite element space V (K) of this triangulation is spanned by continuous piecewise
polynomials. Hence, along e, any v ∈ V (K) must be a linear polynomial, so any global basis
of V (K) must not contain a quadratic component on e.

In contrast, the local shape space of K2 does contain a quadratic component along this edge.
Worse still, the three basis functions of P2(K2) along e are all of strict degree 2. It is unclear
how we should proceed in finding a global basis for V (K). ♦

This problem can be solved in a multitude of ways. The classical solution is through a
hierarchical approach.

3.2. Hierarchical elements

We will construct a basis for the polynomials of given degree through a construction akin to
that of the Lagrange basis, in that each basis function is associated with either a vertex, an
edge, or a face of a triangle.

49

In the definition of a finite element in §1.2, we started with (a) an element domain, (b) a
local shape space, and (c) a set of local degrees of freedom. Instead of these local degrees of
freedom, one can also use a local basis for the shape space. The following result shows that
this leads to an equivalent definition of a finite element.

Lemma 3.2.1. Given an element domain K, a local shape space P(K), and a basis Φ of
P(K), there is a set N (K)—the local degrees of freedom—dual to Φ.

Proof. Seeing Φ =
{
φr : 1 ≤ r ≤ dimP(K)

}
as a vector of functions, any w ∈ P(K) can be

written in terms of this basis using a vector w such that w = w>Φ. Then the set

N (K) :=
{
P(K)→ R : w 7→ wr : 1 ≤ r ≤ dimP(K)

}
is dual to Φ, and of the appropriate size, hence a basis for P(K)′.

Definition 3.2.2. Given an element domain K, a family of bases (ΦK,p)p∈N for the degree-p
polynomials is hierarchical when it satisfies

ΦK,1 ⊂ ΦK,2 ⊂ ΦK,3 ⊂ . . . ;

the sequence of bases is nested. ♦

Corollary 3.2.3. By the definition of a hierarchical basis, we see that for each p,

ΦK,p+1 \ ΦK,p = Pp+1(K) \ Pp(K),

or in words, that in going from degree p to p+ 1, we add polynomials of strict degree p+ 1.

In order to satisfy H1-conformity of the global basis—meaning that global basis elements
lie in H1(Ω), or in other words, that they are continuous across element edges—we will make
a few mild assumptions.

3.2.1. Local hierarchical basis

On a conforming hp-triangulation D ∈ Dc, let E(D) denote the set of its edges, and V(D) the
set of its vertices.

Assume that on each edge e ∈ E(D), there is a sequence (φe,q)q≥2 of polynomials such that

span
{
φe,2, . . . , φe,p

}
= H1

0 (e) ∩ Pp(e) (p ≥ 2). (3.2.4)

Moreover, assume that on each triangle K ∈ K(D), there are three types of functions:

• a set of vertex functions {
φK,v : v ∈ V(D) ∩ T

}
⊂ P1(K) (3.2.5)

such that φK,v(w) = δvw for w ∈ V(D) ∩ T .

• on each edge e ∈ E(D) ∩K and q ≥ 2, an edge function φK,e,q ∈ Pq(K) satisfying

φK,e,q|e = φe,q and φK,e,q|e′ = 0 (e 6= e′ ∈ E(D) ∩K). (3.2.6)

50

• for every q ≥ 3, a collection Φ◦K,q ⊂ Pq(K) of face functions with cardinality #Φ◦K,q = q−2
for which

span Φ◦K,q = H1
0 (K) ∩ Pq(K) \H1

0 (K) ∩ Pq−1(K). (3.2.7)

These assumptions lead to a result locally on K.

Proposition 3.2.8. For (K, d) ∈ D and some degree p = p(d), the set

ΦK,p :=
{
φK,v : v ∈ V(K) ∩K

}
∪
{
φK,e,q : e ∈ E(K) ∩K, 2 ≤ q ≤ p

}
∪

p⋃
q=3

Φ◦K,q,

of all the above functions of degree ≤ p is a basis for Pp(K).

Proof. If the functions in ΦK,p are all linearly independent from each other, and the cardinality
of ΦK,p is correct in that

#ΦK,p = dimPp(K) = (p+ 1)(p+ 2)/2,

then the result must hold. There are no duplicates in ΦK,p, hence

#ΦK,p = 3 +

p∑
q=2

3 +

p∑
q=3

q − 2 = 3 + 3(p− 1) + (p− 1)(p− 2)/2,

so its cardinality satisfies the requirement.
Linear independence will first be assessed within one function type; after that, we will

consider independence across them, completing the argument.
We know that dimPq(K) = (q + 1)(q + 2)/2, and that dimPq(e) = q + 1 on every edge, so

that

dim(H1
0 (K) ∩ Pq(K)) = dimPq(K)− 3 dimPq(e) + 3 =

(q + 1)(q + 2)

2
− 3q.

Therefore, for each 3 ≤ q ≤ p separately, the face functions Φ◦K,q span a space of dimension

dim
(
H1

0 (K) ∩ Pq(K) \H1
0 (K) ∩ Pq−1(K)

)
=

(q + 1)(q + 2)

2
− 3q− q(q + 1)

2
+ 3(q− 1) = q− 2

and must therefore comprise a linearly independent set. Each φ ∈ Φ◦K,q is of strict degree q,
so the union of all such sets must be linearly independent as well.

A similar argument holds for the edge functions: For each 2 ≤ q ≤ p, there is exactly one
edge function that does not vanish along a given edge. Each such edge function is of strict
degree q, so their union must contain functions that are all linearly independent from each
other.

The set of vertex functions is just the degree-1 Lagrange basis, this set must contain linearly
independent functions as well.

Now, both edge- and face functions vanish in vertices, so these must all be independent from
the vertex functions; face functions moreover vanish along edges, so the same must between
edge- and face functions. We conclude that ΦK,p is a set of functions all linearly independent
from each other.

Corollary 3.2.9. The family of bases constructed as above is inherently hierarchical.

51

3.2.2. Global hierarchical basis from local contributions

Given the definition of such a hierarchical element, we will now construct a global basis for
V (D).

Definition 3.2.10. For every interior vertex v ∈ Vint(D) := V(D) \ ∂Ω, define the global
vertex function φv through φv|K := φK,v when v ∈ K ∈ K(D). Collect all of these functions
in a set ΦV

D.
For every interior edge e ∈ Eint(D) := E(D)\∂Ω, define pe := min {pD, pD′} when e = KD ∩KD′ .

Then, for 2 ≤ q ≤ pe, define the global edge function φe,q through φe,q|K := φK,e,q when

e ⊂ K ∈ K(D). Denote the set of all such functions with ΦE
D.

For D ∈ D, the (local) face functions φ ∈ Φ◦KD,q for 3 ≤ q ≤ dD all vanish on ∂KD so they
can easily viewed as functions on the entire domain, vanishing on all element domains except
KD. For the set of all global face functions, write ΦF

D. ♦

These definitions lead to the following important result.

Theorem 3.2.11. Let D ∈ Dc be a conforming hp-triangulation. Then

ΦD := ΦV
D ∪ΦE

D ∪ΦF
D

is a basis for the Galerkin space

V (D) = H1
0 (Ω) ∩

∏
D∈D

PpD(KD).

Proof. We will prove this by showing that (1) ΦD ⊂ V (D); (2) all functions in ΦD are linearly
independent; and (3) V (D) ⊂ span ΦD. By (1) and (3), span ΦD = V (D), and therefore by
(2), it must be a basis.

(1) All our global functions φ ∈ ΦD vanish on ∂Ω, and are piecewise polynomials of appropriate
local degree. We have to show global continuity.

Global continuity is obvious for the face functions. For each global edge function φe,q with
e := KD ∩KD′ , the equality φKD,e,q|e = φe,q = φKD′ ,e,q|e shows that it must be continuous
across ‘its’ edge; the fact that it vanishes outside KD ∪ KD′ and along any edge e′ 6= e
shows its global continuity. The global vertex functions are just the hat functions shown
in Chapter 1, and we already argued their global continuity.

(2) Linear independence follows from the fact that locally on each triangle, the functions are
part of the basis defined in the previous proposition and hence linearly independent.

(3) Take a function v ∈ V (D). Of course v = V v + (v − V v), where V v is its piecewise linear
interpolant. Now, V v is continuous and piecewise linear, and hence can be expressed in
terms of the global hat functions ΦV

D.

Now, by v(w) = V v(w) for vertices w, we know that v−V v vanishes in vertices. Therefore,
restricted to an edge e ∈ Eint(D), it holds that (v − V v)|e ∈ H1

0 (e) ∩ Ppe(e). In (3.2.4) we
assumed having a basis

{
φe,2, . . . , φe,pe

}
for this space, so there is a unique representation

of (v − V v)|e in terms of this local basis. Moreover, each φe,q ∈ Φe,pe corresponds with
exactly one global basis function φe,q ∈ ΦD that vanishes on all other edges. Therefore,

52

define Ev as the linear combination of global edge functions ΦE
D for which Ev|e = (v−V v)|e

along all interior edges.

Then define Fv := v − V v − Ev. We see that Fv must vanish along all edges and in all
vertices. Moreover, locally on each element (K, d), v|K is of degree p = p(d), and so are
both (V v)|K and (Ev)|K . Therefore (Fv)|K is of degree p locally on each element, so it is
a member of ΦF

D globally. We conclude that

v = V v + v − V v = V v + Ev + Fv,

where each term is a linear combination of global functions of vertex, edge, or face type.

In light of the previous theorem, each global basis function is constructed from local contri-
butions. Viewing the local bases

ΦD =
{
φD,r : 1 ≤ r ≤ bdDc4

}
(D ∈ D)

as vectors of basis functions, it is interesting to find out which tuples (D, r) contribute to a
global basis function, and how. This gives rise to a local-to-global mapping that maps local
degrees of freedom

{
(D, r) : D ∈ D, 1 ≤ r ≤ bdDc4

}
to a global index

iD(r) ∈ ∅ ∪
{

1, . . . ,dimV (D)
}
.

Now, iD(r) = ∅ exactly when the local basis function φD,r does not contribute to the global
basis ΦD. This happens when φD,r is

(a) a vertex basis function on the domain boundary;

(b) an edge basis function on the domain boundary;

(c) an edge basis function in the domain interior, and the local complexity of the neighbouring
element is too low (e.g., the situation in Example 3.1.5).

Algorithm 3.2.12. We construct this local-to-global mapping by setting N := 0, and traverse
the elements in some fixed order, assessing for each local degree of freedom r whether or not
it should receive a global index (the conditions (a), (b), and (c) above). If not, we assign
iD(r) := ∅. Else, we distinguish two cases: Whether or not this local basis function contributes
to the same global basis function as some other (D′, r′) that we have seen before. If it has, we
set iD(r) := iD′(r

′). Else, we assign iD(r) := N , and increase N .
A precise formulation is in Algorithm B.0.1 in Appendix B. ♦

3.3. Local bases

We saw in the previous section that equipping each element in a triangulation D with local
bases ΦD can lead to a global basis ΦD for the Galerkin space V (D). Almost always, this
local basis is constructed once on a reference element domain K̂, and the other local bases are
derived from this reference basis through the following construction.

53

Definition 3.3.1. Take a reference element domain K̂. On this reference element, construct a
family of bases (Φ̂p)p. For any element domain K ∈ K, we can find an invertible affine mapping
FK : K̂ → K such that K = F (K̂). On an hp-element D := (K, d), the set

ΦD :=
{
φ̂ ◦ F−1

K : φ̂ ∈ Φ̂p(d)

}
(3.3.2)

is a basis for Pp(d)(K). ♦

Corollary 3.3.3. Any element constructed like this is automatically affine equivalent to the
reference element (K̂, d).

3.3.1. Elementwise decomposition

Definition 3.3.4. In (1.2.20), we saw that constructing the Galerkin solution uD involves
a stiffness matrix and a load vector. Let ΦD be a basis for the finite element space V (D)
constructed through the local-to-global mapping; then these quantities are defined as

A :=
[
〈∇φj ,∇φi〉L2(Ω)

]#ΦD

i,j=1
, b :=

[
〈f,φi〉L2(Ω)

]#ΦD

i=1
. ♦

Take the load vector as an example. Note that b decomposes into contributions on each
element locally, in that

b =
∑
D∈D

b̃D, b̃Di =
∑
D∈D
〈f,φi〉L2(KD).

By the construction of ΦD, its basis functions have local support (cf. Figure 3.1.4), so these
vectors b̃D are sparse. Moreover, we can associate with each b̃D an element load vector

bDr := 〈f, φDr 〉L2(K) =⇒ b̃DiD(r) = bDr (1 ≤ r ≤ bdc4).

Note that in general, bD—with only bdc4 entries—is much smaller than b̃D.
If the forcing function f |K is locally a polynomial, then we can write it as f |K = f>DΦD.

With this, we see that the element load vector reduces to

bDr = f>D colrM
D, (3.3.5)

where MD is the element mass matrix

MD
rs = 〈φDr , φDs 〉L2(K) (1 ≤ r, s ≤ bdc4).

Similarly, one can derive the element stiffness matrix to be

ADrs = 〈∇φDr ,∇φDs 〉L2(K) (1 ≤ r, s ≤ bdc4).

Proposition 3.3.6. The element mass matrix is, for each hp-element, invertible. The element
stiffness matrix is singular, for each hp-element.

54

3.3.2. Expressing polynomials on refined triangulations

In (3.3.5), we saw that when a function v is a polynomial locally on D = (K, d), there is an
appropriate vector vD ∈ Rbdc4 of its coefficients with respect to the basis ΦD. Then v is also a
polynomial on any (h- or p-)refinement D′ = (K ′, d′) of D, so there is some vector vD′ ∈ Rbd′c4
that describes its coefficients with respect to this basis. We are interested in finding this vector,
as it is needed in a number of places in our algorithm. Let us write 4p for the pth triangle
number; then dimPp = 4p.

Definition 3.3.7. With D := (K, d), define the p-transfer mapping

T pD : R4p → R4p+1 : vD 7→ vD′ , D′ := (K,4p+1)

and for k = 1, 2 the h-transfer mappings

T h,kD : R4p → R4p : vD 7→ vDk , Dk := (Kk,4p)

where K1,K2 are the left resp. right child of K after bisection.
Any polynomial v ∈ Pp(K) can be written in terms of the induced local basis on any

refinement of D by successive composition of these mappings. ♦

Example 3.3.8. These transfer mappings are used in a number of places inside the hp-adaptive
algorithm. For instance, by defining the forcing function vectors fD on an initial triangulation
D0, we can derive the corresponding vectors on any hp-element D found from D0 through h-
or p-refinement, allowing us to efficiently compute the element load vectors from (3.3.5).

The module hp-NearBest also relies on these mappings for computing the error functionals,
as we will see in Chapter 4. ♦

Proposition 3.3.9. The mappings T pD and T h,kD are linear maps, so we can write them as
matrices. Viewing a local basis ΦD as a column vector of functions, the following equalities
hold:

(T pD)>ΦD′ = ΦD, (T h,kD)>ΦDk = ΦD|Kk (k = 1, 2, D′ and Dk as above).

Proof. The first assertion holds trivially. We will prove the equality for the p-transfer matrix;
the argument for the h-transfer matrices is analogous.

We know that for any v ∈ Pp(K), there are vectors vD,vD′ such that

v = v>DΦD = v>D′ΦD′ and vD′ = T pDvD,

so
v = (T pDvD)>ΦD′ .

This is for all v, therefore also for all φ ∈ ΦD, so

ΦD = (T pD)>ΦD′ .

Proposition 3.3.10. The matrices T pD and T h,kD are invariant under D; we will write T p and
T h,k instead.

55

Proof. We show the argument for the p-transfer matrix; the argument for the h-transfer ma-
trices is analogous.

Using the above proposition, (T pD)>ΦD′ = ΦD for all hp-elements D. Moreover, ΦD is found

from the reference basis through ΦD = Φ̂p ◦ F−1
K .

Then we see that

(T pD)>ΦD′ = ΦD = Φ̂p ◦ F−1
K and (T pD)>ΦD′ = (T pD)>(Φ̂p+1 ◦ F−1

K) = ((T pD)>Φ̂p+1) ◦ F−1
K ,

so that
Φ̂p ◦ F−1

K = ((T pD)>Φ̂p+1) ◦ F−1
K =⇒ Φ̂p = (T pD)>Φ̂p+1.

Now, we know that Φ̂p = (T p
D̂p

)>Φ̂p+1 with the reference hp-element D̂p := (K̂,4p), so we

conclude that T pD = T p
D̂p

for each hp-element D. Therefore T p := T p
D̂p

is the p-transfer matrix,

independent of D.

Proposition 3.3.11. The h-transfer matrices are invertible.

Proof (sketch). Any polynomial on a child triangle can be uniquely extended to the parent
triangle. Expressed in terms of local bases, this is exactly the inverse operation of applying
the h-transfer matrix. Therefore this inverse must exist.

3.3.3. Conditioning of a local basis

Definition 3.3.12. The condition number κ(A) of an invertible matrix A gives a bound on
how inaccurate the solution x of the linear system Ax = b will be after approximation. It is
defined as

κ(A) := ‖A‖‖A−1‖

for any matrix norm ‖ · ‖. In our case, we will use the 2-norm, and

κ(A) =
σmax(A)

σmin(A)
;

the condition number is the quotient of the largest and smallest singular values. ♦

On a finite-memory machine, we express real numbers in floating-point representation which
introduces rounding errors, so this condition number is instrumental in the analysis of numerical
methods.

Corollary 3.3.13. Note that by Propositions 3.3.6 and 3.3.11, the mass-, and h-transfer
matrices are invertible, and hence have a condition number.

The element stiffness matrix AD is singular, so κ(AD) =∞. Still, we can get an idea of the
“conditioning” of the element stiffness matrices by considering the Moore-Penrose inverse of
AD.

Theorem 3.3.14 ([28, Thm. 2.1]). For each square matrix A ∈ Rn×n, there is a unique matrix
A+ such that

AA+A = A, A+AA+ = A+, (AA+)> = AA+, (A+A)> = A+A;

this matrix is the Moore-Penrose inverse of A.

56

Definition 3.3.15. We can extend the definition of the condition number to singular matrices
by defining

κ̃(A) :=‖A‖2
∥∥∥A+

∥∥∥
2
.

Of course, when A is invertible, A+ = A−1 so that κ̃(A) = κ(A).
One can show [28, (2.7)] that

∥∥A+
∥∥

2
= max

{
1/σ : σ singular value of A, σ > 0

}
; its 2-norm

is the reciprocal of the smallest positive singular value. Therefore

κ̃(A) =
σmax(A)

σmin>0(A)
.

In subsequent analyses, we will use κ̃ instead of κ to compute condition numbers. ♦

Definition 3.3.16. Given a reference triangle K̂, a family of local reference bases (Φ̂p)p∈N
on K̂ is called well-conditioned when the condition number of the h-transfer matrices, and
reference mass- and stiffness matrices have a favourable growth rate with respect to p.

There is no exact definition of favourable, but generally O(pN) for some N is good. ♦

Remark 3.3.17. It must be noted that conditioning of the basis is often measured numerically,
rather than through rigorous proofs. One generally computes condition numbers of the desired
quantities up to a suitably high degree p, and extrapolates from this the behaviour for p →
∞. ♦

3.4. Examples of hierarchical elements

We saw that certain families of local bases can induce a global basis for the Galerkin space, and
have looked at properties of general local bases, but we haven’t actually seen any examples.
This is the topic of the remainder of this chapter.

3.4.1. The Szabó-Babuška basis

Between 1989 and 1991, Szabó and Babuška [6] [45, §6.2] derived the first hierarchical basis.
The shape functions are based on the Legendre polynomials, which have favourable orthogo-
nality properties.

Definition 3.4.1. The Legendre polynomial Pp ∈ Pp([−1, 1]) of strict degree p is recursively
defined as

P0(x) := 1, P1(x) := x, p · Pp(x) := 2p · x · Pp−1(x)− (p− 1)Pp−2(x) (p ≥ 2). ♦

Theorem 3.4.2. The Legendre polynomials are orthogonal with respect to the L2([−1, 1])-inner
product: ∫ 1

−1
Pp(x)Pq(x) dx =

2

2p+ 1
δpq.

Recall the assumptions of a local hierarchical basis in §3.2.1. We will define the hierarchical
Szabó-Babuška basis one type at a time, all in terms of the barycentric coordinates λ on a
triangle K.

57

Definition 3.4.3. The first three basis functions are the degree-1 vertex functions defined as

φK,r(λ) := λr, (1 ≤ r ≤ 3).

They are one in the rth vertex, and vanish in the others, and therefore necessarily satisfy (3.2.5).
♦

Proposition 3.4.4. For q ≥ 2, the function

Eq : [−1, 1]→ R : x 7→ −8
√

4q − 2

q(q − 1)
P ′q−1(x)

is a polynomial of strict degree q − 2.

Definition 3.4.5. On each edge e ∈ E(D), we fix a global orientation e = hull(ve1,v
e
2) and

local barycentric coordinates{
(λe1, λ

e
2) : 0 ≤ λe1, λe2 ≤ 1, λe1 + λe2 = 1

}
.

On this edge, we define the sequence (φe,q)q≥2 through

φe,q(λ
e
1, λ

e
2) := λe1λ

e
2Eq(λ

e
2 − λe1).

By virtue of the λe1λ
e
2-factor, these functions vanish in the vertices of e. Moreover, they are of

strict degree q, so that (3.2.4) holds.
On a triangle K := hull(vK1 ,v

K
2 ,v

K
3), defining an edge shape function φK,e1,q of the edge

e1 := hull(ve11 ,v
e1
2) opposite vertex 1 requires some care. Noting that e1 = hull(vK2 ,v

K
3), it is

very well possible that the global orientation of e1 disagrees with its local orientation on K;
take for example K2 in Figure 3.4.6.

K1 K2e

vK1
1 vK2

1

vK1
3 =ve2 =vK2

2

vK1
2 =ve1 =vK2

3

Figure 3.4.6.: Two neighbouring triangles with edge e := K1∩K2. Arrows indicate orientation.
The global orientation of edge e := hull(ve1,v

e
2) agrees with its local orientation

on K1, but not on K2.

In order to guarantee that φK,e1,q|e1 = φe1,q, we may have to correct for this by inverting the
local orientation, effectively swapping the barycentric coordinates λ2 and λ3. More formally,
we define

φK,e1,q(λ) :=

{
λ2λ3Eq(λ3 − λ2) when vK2 = ve11 ,

λ2λ3Eq(λ2 − λ3) when vK3 = ve11 .

Note that φK,e1,q vanishes on both edges emanating from vertex 1, and equals φe1,e along e1.
The definitions of the other edge shape functions are analogous; this satisfies (3.2.6). ♦

58

Fixing an orientation along each edge has the effect that bases on neighbouring triangles are
not necessarily affine equivalent to each other. We explore this in further detail in §4.3.

Definition 3.4.7. The collection of face functions of degree q is defined as

Φ◦K,q :=
{
φq,r(λ) := λ1λ2λ3Fq,r(λ), 0 ≤ r ≤ q − 3

}
where

Fq,r(λ) := Pr(λ2 − λ1)Pq−3−r(2λ3 − 1).

Each face function is a polynomial of strict degree q, and necessarily vanishes on all edges
of the triangle. They are all linearly independent from each other; the set of all such face
functions therefore satisfies (3.2.7). ♦

Even though their efforts were important in the development of later hierarchical bases, the
Szabó-Babuška basis is not well-conditioned, as the following result shows.

Example 3.4.8. Looking at Figure 3.4.9, we see that for p between 1 and 20, the condition
numbers exhibit quicker-than-polynomial growth. For large p, the matrices even break down
numerically, and Mathematica [48] is no longer able to compute their condition numbers. We
conclude that this family of bases is not well-conditioned.

The bottom graph shows that the stiffness matrix is, for large p, almost a full matrix without
any sparsity. Thanks to orthogonality of the Legendre polynomials, the mass matrix exhibits
a fair level level of sparsity, but this does not help dampen its condition number; the same
holds for the h-transfer matrix. (The two h-transfer matrices have virtually equal condition

number and sparsity percentage, so we chose to only consider one—in our case, T h,1p .) ♦

The efforts of Szabó and Babuška were more focused on exploring the theory of hierarchical
finite elements, and in the original paper [6], it can be read that they acknowledge the fact
that their example basis is imperfect. They mention an abstract “optimal” hierarchical basis
“which exact structure is not known.” Let us look at one improvement.

3.4.2. The Aiffa basis

In later years, multiple researchers have improved the results of the Szabó-Babuška basis in
terms of conditioning. In 2001, Aiffa et al. [2] published a paper deriving the first hierarchical
basis with well-conditioned reference stiffness matrix.

Their contribution is very simple, with enormous effects. Note that for large p, the majority
of the Szabó-Babuška basis is made up of face shape functions. These face shape functions have
a lot of interaction with each other. Removing these interactions by simply orthogonalizing
the face shape functions (with respect to the bilinear form) decreases the condition number
dramatically.

More formally, denote the Szabó-Babuška face shape functions of degree up to p with
Φ◦,SB
K,≤p := ∪pq=3Φ◦K,q. Viewing it as a vector, we can write

Φ◦,SB
K,≤p =

{
φSB
r : 1 ≤ r ≤ 4p−2

}
.

We define
Φ◦,Aif
K,≤p := GΦ◦,SB

K,≤p

59

Figure 3.4.9.: Conditioning and sparsity of the Szabó-Babuška basis for p = 1, . . . , 20. We
investigate the h-transfer matrix, and the element mass- and stiffness matrices.
Top: condition numbers of the three matrices of interest. Bottom: percentage
of nonzero elements.

where G is a linear transformation such that

a(φAif
r , φAif

s) = δrs (1 ≤ r, s ≤ 4p−2).

This is usually done though the Gram-Schmidt process; cf. Algorithm 3.4.10. This process
retains the hierarchical structure of the basis when the input face shape functions are ordered
from lower to higher degree.

Example 3.4.11. Look at Figure 3.4.12. We see that with respect to the Szabó-Babuška
basis, condition numbers of the element mass- and stiffness matrix are greatly reduced and no
longer grow exponentially. The percentage of nonzeros of the stiffness matrix is also greatly
improved, at the cost of sparsity for the mass matrix. This is fine; the element mass matrices
are only used in intermediate local computations. Element stiffness matrices however are used
to build the global stiffness matrix, which we use to solve a very large linear system. Any gain
in sparsity saves us memory; any gain in conditioning improves our final solution.

What we do see however, is the exponential growth of the h-transfer matrix condition num-
ber, making the Aiffa basis not well-conditioned either. ♦

The Aiffa basis looks like a strong candidate for becoming our local basis. By its hierar-
chicality, we satisfy the conditions of Theorem 3.2.11 so that this local basis leads to a global
basis for V (D).

60

1: φr := φSB
r , for 1 ≤ r ≤ 4p−2;

2: φAif
1 := φ1/

√
a(φ1, φ1); . Normalize φ1

3: for r = 2, . . . ,4p−2 do
4: for s = 1, . . . , k − 1 do
5: βrs := a(φr, φs); . Interaction between φr and φs
6: φr = φr − βrsφs; . Orthogonalize φr wrt. φs

7: φAif
r := φr/

√
a(φr, φr); . Normalize φr

8: return Φ◦,Aif
K,≤p.

Algorithm 3.4.10: The Gram-Schmidt orthogonalization process.

3.4.3. A downside to precomputing the matrices

Even though the basis is not well-conditioned, the previous example showed that it is, at least,
a lot better than the previous Szabó-Babuška basis. There is however one glaring hole: It is
really difficult to compute the element mass-, stiffness-, and h-transfer matrices. We therefore
resort to precomputing them on a reference element, and apply linear transformations to
these precomputed arrays in real-time to find the necessary quantities. We will look at this
more carefully in Chapter 4, but it does mean that there is an upper limit on the maximal
polynomial degree that can be present in an hp-triangulation. Any such limit immediately
voids the optimality results of Chapter 2. This motivates the final section of this chapter.

61

Figure 3.4.12.: Conditioning and sparsity of the Aiffa basis for p = 1, . . . , 20. We investigate the
h-transfer matrix, and the element mass- and stiffness matrices. Top: condition
numbers of the three matrices of interest. Bottom: percentage of nonzero
elements.

62

3.5. Bernstein-Bézier elements

Just over a hundred years ago, in 1912, Bernstein [8] introduced a new basis for the univariate
polynomials of certain degree. The Bernstein polynomials were designed for a constructive
proof of the Weierstrass approximation theorem. A sequence of such polynomials is con-
structed, each a better approximation to the intended function than its predecessor. The slow
convergence rate of this sequence, and the lack of digital computers to efficiently construct
the Bernstein polyomials, caused the Bernstein basis to be of mainly theoretical rather than
practical importance.

In the early 1960s, two engineers in the car industry—Paul de Faget de Casteljau of Citroën
and Pierre Étienne Bézier of Renault—found a different application of the Bernstein basis.
Interested in formulating mathematical tools that would allow designers to intuitively construct
and manipulate complex shapes such as automobile bodies, de Casteljau and Bézier came across
the Bernstein polynomials as the foundation of the Bézier curves now ubiquitous in computer
aided geometric design. De Casteljau was responsible for formulating a recursive algorithm
allowing one to evaluate a multivariate Bernstein polynomial; Bézier popularized them.

More recently, Ainsworth [4] has expressed interest in using the Bernstein-Bézier or BB-basis
in an hp-adaptive finite element context. The main problem with higher-degree hierarchical
bases is their reliance on precomputed arrays—see §3.4.3, which voids guaranteed exponential
convergence of hp-AFEM. The BB-basis allows computing any necessary matrix in real-time,
without the use of a reference element. This sounds amazing, but it does come at the expense
of hierarchicality, so p-enrichment becomes harder. In this section, we will first construct a
basis for the full polynomial space Pp(K), and defer the nonuniform degree case to the final
paragraph.

3.5.1. Bernstein polynomials

Recall the domain- and lattice points from Definition 1.2.5:

Dp(K) := {vα : α ∈ Ip} , Ip :=
{
α ∈ N3

0 : |α| = p
}

where vα is point inside K corresponding with the barycentric coordinates p−1α.

Definition 3.5.1. Each α ∈ Ip corresponds with a Bernstein polynomial on K̂ defined in
terms of the barycentric coordinates as

Bp
α(λ) :=

(
p

α

)
λα, λα :=

3∏
i=1

λαii

where (
p

α

)
:=

p!

α1!α2!α3!

is a multinomial coefficient.
By convention, when αi = 0, then λαii := 1, even when λi = 0. ♦

By definition, a Bernstein polynomial Bp
α for which α1, α2, α3 > 0 must vanish on the bound-

ary. Conversely, when αi = 0, the function Bp
α does not vanish on the edge opposite vertex i.

The following properties help our understanding of the general shape of these polynomials.

63

Proposition 3.5.2 ([32, Thm. 2.5]). The Bernstein polynomial Bp
α attains its unique maxi-

mum at the domain point vα associated with its lattice point α. More formally:

Bp
α(vα) > Bp

α(λ) (λ 6= vα ∈ Dp(K̂)).

Proposition 3.5.3 ([4]). The Bernstein polynomials satisfy

Bp
α ∈ Pp(K̂), Bp

α(λ) ≥ 0 (λ ∈ K̂,α ∈ Ip) and
∑
α∈Ip

Bp
α(λ) = 1 (λ ∈ K̂).

In words, Bp
α is a polynomial of degree p that is nonnegative on its entire domain, and the set

of all Bernstein polynomials of given degree sums to unity.

The following result makes the Bernstein polynomials useful in a finite element setting.

Theorem 3.5.4 ([32, Thm. 2.4]). The set Φ̂BB
p :=

{
Bp
α : α ∈ Ip

}
of all Bernstein polynomials

of given degree forms a basis for Pp(K̂).

Definition 3.5.5. By the above theorem, Φ̂BB
p is a basis for Pp(K̂). Its enumeration is through

the lexicographic ordering of the multi-indices α ∈ Ip. This defines the Bernstein-Bézier
reference element. ♦

Definition 3.5.6. The usual invertible affine mapping FK : K̂ → K can be used to transform
the reference basis functions Bp

α to Bernstein polynomials on arbitrary triangles through

BK,p
α := Bp

α ◦ F−1
K ,

thereby defining the BB-basis ΦBB
D for hp-elements D := (K, d) when p(d) = p. ♦

3.5.2. De Casteljau algorithm

Imagine having found a finite element solution using the BB-basis, and wanting to visualize
this solution. A common starting point is to evaluate the solution on a large number of points
in the problem domain. How can we evaluate this Galerkin solution?

Of course, on each hp-element D := (K, d) separately, it is a polynomial. We have its local
coefficient vector u(p) so that

u|K =
∑
α∈Ip

u
(p)
α BK,p

α .

To evaluate u at a point x ∈ K with barycentric coordinates λ, we use the de Casteljau
algorithm. The algorithm is based on the recurrence relation

BK,p
α (λ) =

3∑
n=1

λnB
K,p−1
α−en (λ) (3.5.7)

where we drop any term involving negative multi-indices. Inserting this into the original
formulation of u|K , we see that

u|K(λ) =
∑

α∈Ip−1

u
(p−1)
α BK,p−1

α (λ),

64

where

u
(p−1)
α :=

3∑
n=1

λnu
(p)
α+en (α ∈ Ip−1).

Note that the values u
(q−1)
α = u

(q−1)
α (λ) are dependent on the barycentric coordinates λ, and

are not simply constants. The de Casteljau algorithm then consists of iterating this process to
obtain the zeroth order representation

u|K(λ) = u
(0)
0 BK,0

0 (λ) = u
(0)
0 ,

which contains the evaluation of u|K in λ on the right-hand side.
We end this paragraph with a precise formulation of the de Casteljau algorithm in Algo-

rithm 3.5.8.

1: function Evaluate(u(p), λ)
2: for q = p, . . . , 1 do
3: for α ∈ Iq−1 do
4: u

(q−1)
α :=

∑3
n=1 λnu

(q)
α+en ;

5: return u
(0)
0 .

Algorithm 3.5.8: De Casteljau algorithm for evaluating a polynomial in Bernstein-Bézier form.

3.5.3. Computing mass- and stiffness matrices

In a previous paragraph, we derived a basis ΦBB
D given an hp-element D := (K, d). Inside the

hp-AFEM algorithm, we don’t really need the polynomials itself: It is the interactions between
them that matter. Of course, it is possible to find, for instance, the element mass matrix cells
by manually computing

∫
φrφs—this is the route we took in the hierarchical case. However,

as it turns out, the Bernstein basis allows us to do something much more beautiful.
In this paragraph, we will express the element mass- and stiffness matrices on the hp-element

D directly, without the involvement of a reference element. The result is that we don’t have
to rely on precomputed arrays and can therefore scale our algorithm to p→∞.

Definition 3.5.9. The binomial coefficient is defined in terms of multinomial coefficients as(
p

q

)
:=

(
p

(q, p− q)

)
, (p ∈ N, 0 ≤ q ≤ p).

Moreover, we define (
α

β

)
:=

3∏
n=1

(
αn
βn

)
, (α,β ∈ N3

0, βn ≤ αn∀n). ♦

The following properties make the Bernstein polynomials truly remarkable.

65

Proposition 3.5.10 ([4, (2.6)]). The product of Bernstein polynomials is again a (scaled)
Bernstein polynomial:

BK,p
α BK,q

β =

(
α+β
α

)(
p+q
p

) BK,p+q
α+β .

Proposition 3.5.11 ([4, (2.7)]). The integral of a Bernstein polynomial on K satisfies∫
K
BK,p
α (x) dx =

vol(K)(
p+2

2

) .
Lemma 3.5.12 ([4, (2.4)]). If K = hull(v1,v2,v3) with vn = (xn, yn), the gradients of the
barycentric coordinates satisfy

∇λ1 =

[
y3 − y1

x1 − x3

]
, ∇λ2 =

[
y1 − y2

x2 − x1

]
, ∇λ3 =

[
y2 − y3

x3 − x2

]
.

Proposition 3.5.13. The gradient of a Bernstein polynomial satisfies

∇BK,p
α (x) = p

3∑
n=1

BK,p−1
α−en (x)∇λn

where we again adopt the convention dropping any term involving negative multi-indices.

Corollary 3.5.14. The element mass matrix of degree p satisfies

MK,p
αβ =

(
α+β
α

)(
2p
p

) vol(K)(
2p+2

2

) .
Corollary 3.5.15. The element stiffness matrix of degree p satisfies

AK,pαβ =
p2 vol(K)(

2p
2

) 3∑
n,m=1

(
α−en+β−em

α−en
)(

2p−2
p−1

) ∇λn · ∇λm

=
2 vol(K)(

2p
p

) 3∑
n,m=1

(
α− en + β − em

α− en

)
∇λn · ∇λm.

A result of the above corollaries is that the main difficulty in finding the element matrices
is not numerical integration, but rather computation of the multinomial coefficients!

The binomial coefficients are most easily found by the following recursive formula.

Lemma 3.5.16 (Pascal triangle). The binomial coefficients satisfy(
p

0

)
= 1 =

(
p

p

)
,

(
p

q

)
=

(
p− 1

q − 1

)
+

(
p− 1

q

)
(1 ≤ q ≤ p− 1).

Remark 3.5.17. These binomial coefficients grow quickly: It can be shown that the central
binomial coefficient

(
2p
p

)
grows like 4p√

πp .

In 32-bit integer arithmetic, p = 17 already causes overflow, and with 64 bits, this number in-
creases to p = 34. Of course, our finite element solver works with floating point numbers rather

66

than integers, but storing the binomial coefficients in floating point representation introduces
rounding errors that may become significant for large values of p.

A commonly used alternative is to represent the binomial coefficients in a prime exponent
vector. The binomial coefficient

(
p
q

)
clearly cannot possess a prime factor larger than p, so

that if we order the m prime numbers ≤ p in a vector (p1, . . . , pm), there is a unique vector
(e1, . . . , em) such that (

p

q

)
=

m∏
i=1

peii .

An efficient algorithm for finding this vector is described in [22]. This representation has
more advantages: Multiplication and division of binomial coefficients become simple additions
resp. subtractions of the prime exponent vector. ♦

3.5.4. Computing the transfer matrices

Subdivision of a triangle (h-refinement) and degree raising (p-enrichment) have many applica-
tions in Computer-Aided Geometric Design. Take for instance the visualization of a polynomial
in Bernstein-Bézier representation. Being able to evaluate this polynomial in the vertices of a
highly refined mesh can be hugely beneficial in this case. It is outside the scope of this thesis
to fully dive into this topic, but some aspects will be useful within our finite element context
as well.

Many of the algorithms with Bernstein polynomials are based on recurrence relations like (3.5.7).
For p-enrichment, for instance, the following relation is useful.

Proposition 3.5.18 ([3, §3.2]). Given some degree p ∈ N, and some lattice point α ∈ Ip, we
can express the Bernstein polynomial Bp

α in terms of the BB-basis of degree p+ 1 by

Bp
α =

3∑
i=1

αi + 1

p+ 1
Bp+1
α+ei

where ei is the ith unit vector.

Proof. This follows from

Bp
α(λ) =

3∑
i=1

λiB
p
α(λ) =

3∑
i=1

λi
p!∏
j αj !

∏
j

λ
αj
j

=

3∑
i=1

αi + 1

p+ 1

(p+ 1)!∏
j(αj + δij)!

∏
j

λ
αj+δij
j

=

3∑
i=1

(
p+ 1

α+ ei

)
λα+ei =

3∑
i=1

Bp+1
α+ei

(λ).

Remark 3.5.19. Note that the above recursion fully characterizes the p-transfer matrix. Each
column contains exactly three nonzero cells, making this matrix very sparse. For instance, a

67

little pen-and-paper algebra shows that

B1

(1,0,0) = B2
(2,0,0) + 1

2B
2
(1,1,0) + 1

2B
2
(1,0,1)

B1
(0,1,0) = B2

(0,2,0) + 1
2B

2
(1,1,0) + 1

2B
2
(0,1,1)

B1
(0,0,1) = B2

(0,0,2) + 1
2B

2
(1,0,1) + 1

2B
2
(0,1,1)

=⇒ T p1 =

1 0 0
1
2

1
2 0

1
2 0 1

2
0 1 0
0 1

2
1
2

0 0 1

. ♦

We can approach the h-transfer matrices in a similar fashion. The De Casteljau algorithm
(cf. §3.5.2) can be used to find a recurrence relation for the expression of a Bernstein polynomial
on a triangle in terms of the BB-basis on its children.

Theorem 3.5.20 ([32, Thm. 2.38]). Recall that |β| = q for β ∈ Iq. Given a triangle
K := hull(v1,v2,v3), define its two children as

K1 := hull(w,v3,v1), K2 := hull(w,v1,v2), w := (v1 + v2)/2.

Let
{
BKk,p
β : β ∈ Ip

}
be the BB-basis on triangle Kk, for k = 1, 2. Then

BK,p
α |K1 =

∑
β∈Ip

b
(p−β2)
α,β−β2e2B

K1,p
β and BK,p

α |K2 =
∑
β∈Ip

b
(p−β3)
α,β−β3e3B

K2,p
β ,

where
{

b
(q)
α,β : β ∈ Iq

}
are the quantities obtained in the qth step of the De Casteljau algorithm

(cf. Algorithm 3.5.8).
As a result, these quantities satisfy

b
(p)
α,β = δαβ, (β ∈ Ip), b

(q−1)
α,β :=

1

2
b

(q)
α,β+e2

+
1

2
b

(q)
α,β+e3

(1 ≤ q ≤ p,β ∈ Iq−1). (3.5.21)

Remark 3.5.22. The above result fully characterizes the h-transfer matrices. Note that the

initial quantity b
(p)
α,· of (3.5.21) is very sparse, having zeros in every position except β. The

recurrence relation of (3.5.21) then ensures that every such vector b
(q−1)
α,β is sparse, which in

turn ensures sparsity of the final h-transfer matrices. ♦

3.5.5. Conditioning of the basis

Through the results in Corollaries 3.5.14 and 3.5.15, Proposition 3.5.18, and Theorem 3.5.20,
it is obvious that the cells inside the element matrices are readily computed in real time. Let
us now study the conditioning of these matrices in more detail.

Theorem 3.5.23 ([31, Cor. 4.3]). The condition number of the reference mass matrix M K̂,p,
as a function of the degree p, is

κ(M K̂,p) =

(
2p+ 2

p

)
.

This number grows exponentially in p.
We therefore conclude that the BB-basis is not well-conditioned.

68

Example 3.5.24. See Figure 3.5.25. In terms of conditioning, the BB-basis is comparable
to the previous bases, in that the condition number of either mass- or stiffness matrix shows
exponential growth. In this case however, all three condition numbers grow quickly. Moreover,
both mass- and stiffness matrices are full, so any sparsity in that regard is gone.

The sparsity of the h-transfer matrix is remarkable; see Theorem 3.5.20 and the remark
thereunder for a short explanation. ♦

Figure 3.5.25.: Conditioning and sparsity of the BB-basis for p = 1, . . . , 20. We investigate the
h-transfer matrix, and the element mass- and stiffness matrices. Top: condition
numbers of the three matrices of interest. Bottom: percentage of nonzero
elements.

Remark 3.5.26. Remember that the condition number of the element stiffness matrices has
a direct effect on the conditioning of the global stiffness matrix.

The BB-basis is ill-conditioned, and thus, the Galerkin solution uK with respect to the
global basis cannot be expected to bring‖u− uK‖H1

0 (Ω) down to machine precision. Numerical

findings by Kirby [30, Figs. 4.4–4.6] suggest that this problem is not seen in practice. In his
words: “The accuracy we obtained in the finite element solution is surprising in light of the
very large condition numbers, and we do not have an explanation for this. The condition
number only provides a worst-case situation that seems, in this case, quite pessimistic.” ♦

69

3.5.6. Bernstein-Bézier elements of nonuniform degree

Because the BB-basis is not hierarchical in nature, we cannot simply construct a basis for
Pp(K) and throw away some basis functions hoping to get a global basis for the Galerkin
space.

Ainsworth employs a completely different tactic in [3]. The theory is still in early stages of
development, and its notation rather heavy, so we will not derive it here in full. Instead, we
will try to explain the idea and why it works.

Definition 3.5.27. Given a triangle K := hull(v1,v2,v3), for 0 ≤ k ≤ 2, the convex hull
of any k + 1 of its vertices is a nondegenerate k-simplex in R2. We call a simplex like this
a subsimplex of K, as it corresponds with either its face (k = 2), an edge (k = 1), or a
vertex (k = 0). Denote the set of k-subsimplices with 4k(K), and the set of all subsimplices
4(K). ♦

Domain points

On such a k-simplex F := hull(vF1 , . . . ,v
F
k+1), we can define the domain points

Dpk(F) :=
{

vFα : α ∈ Ipk
}
, vFα :=

1

p

k+1∑
n=1

αnv
F
n

where Ipk is the lattice index set defined by Ipk :=
{
α ∈ Nk+1

0 : |α| = p
}

. The interior lattice

set I̊pk ⊂ I
p
k is defined as I̊pk :=

{
α ∈ Nk+1 : |α| = p

}
, inducing the interior domain points

D̊pk(F) :=
{

vFα : α ∈ I̊pk
}

. See Figure 3.5.28 for a visualization.

v2

(3)

(3, 0)
v3

(2, 1)

(1, 2)

(0, 3)
v1

(3, 0, 0)
v1

(2, 1, 0)

(1, 2, 0)

v2

(0, 3, 0)

(0, 2, 1)

(0, 1, 2)

(0, 0, 3)
v3

(1, 0, 2)

(2, 0, 1)

(1, 1, 1)

Figure 3.5.28.: A triangle K := hull(v1,v2,v3) with the 1-subsimplex hull(v3,v1) and 0-
subsimplex hull(v2), along with their lattice set and domain points, for p = 3.
Interior domain points are indicated by open circles.

Remark 3.5.29. Figure 3.5.28 shows another important point. To make sure subsimplices
are uniquely determined by their vertices, we order the vertices in a specific way. When F is

70

an edge, the direction of F is clockwise relative to the triangle K; when F is a 2-simplex, its
vertices are ordered like K itself. ♦

When F is a k-subsimplex of K, the set of domain points Dpk(F) is a subset of the domain
points Dp2(K) of the triangle itself. Therefore, given αF ∈ Ipk , there is an index αK ∈ Ip2
such that vF

αF
= vK

αK
. We can formalize the relationship between multi-indices of the domain

points that F and K have in common by the following procedure.

Definition 3.5.30. Given K := hull(v1,v2,v3) and k-subsimplex F := hull(vF1 , . . . ,v
F
k+1),

we have
αK = εFKα

F , (3.5.31)

where εFK : Ipk → I
p
2 is the extension mapping defined by

αKn =

{
αFm when vn = vFm for some m,

0 else.
(3.5.32)

♦

Example 3.5.33. For instance, in Figure 3.5.28, we see that

εFK(3, 0) = (0, 0, 3), εFK(2, 1) = (1, 0, 2),

εFK(1, 2) = (2, 0, 1), εFK(0, 3) = (3, 0, 0). ♦

The following result is one of the cornerstones of the argument in this section.

Proposition 3.5.34 ([3, Lem. 3]). The set of domain points of the original triangle is equal
to the disjoint union of the interior domain points on all subsimplices:

Dp
2(K) =

2⊔
k=0

⊔
F∈4k(K)

εFKD̊pk(F).

Barycentric coordinates

On any k-simplex F ∈ 4k(K), we can define local barycentric coordinates λF , being an (k+1)-
tuple of nonnegative scalars that sum to unity. The rule F 3 x→ λF ∈ Rk+1 defines an affine
mapping on F .

In view of F ⊂ K, a point x ∈ F also belongs to K so both λK(x) and λF (x) are well-defined.
Similar to (3.5.32), one can derive that

λKn =

{
λFm when vn = vFm for some m,

0 else.
(3.5.35)

With a slight abuse of notation, we also denote the mapping defined through (3.5.35) by εFK ,
so that

λK(x) = εFKλ
F (x) (x ∈ F). (3.5.36)

We can extend this definition to all x ∈ K by the barycentric extension: Viewing λF (x) as the
three-tuple (λ(x), 1− λ(x), 1) for x ∈ F , there is µ(x) ∈ [0, 1] that satisfies

λF (x) =
(
λ(x)[1− µ(x)], [1− λ(x)][1− µ(x)], µ(x)

)
(x ∈ K).

This yields
λK(x) := εFKλ

F (x) (x ∈ K). (3.5.37)

71

Bernstein polynomials

With the barycentric coordinates defined on any subsimplex F ∈ 4(K), the definition of a
Bernstein polynomial is easily extended to F through

BF,p
α (x) :=

(
p

α

)
λF (x)α, (α ∈ Ipk ,x ∈ F).

Recall the extension of multi-indices and barycentric coordinates from F to K (cf. (3.5.31)
resp. (3.5.37)), and note that

αF ! = αK !, λF (x)α
F

= λK(x)α
K
.

Then there is a natural extension of the Bernstein polynomials on F to K through

BF,p
αF

(x) = BK,p
αK

(x) = BK,p
εFKαF

(x), (x ∈ F,α ∈ Ipk).

The above obviously only holds for x ∈ F . We can again extend the definition to all x ∈ K
through a barycentric extension mapping EFK similar to (3.5.37), yielding

EFKB
F,p
α (x) = BK,p

εFKα
(x), (x ∈ K,α ∈ Ipk).

Nonuniform degree Bernstein-Bézier basis

There is a natural correspondence between Bernstein polynomials on F and the domain points
Dpk(F) of F . Denote by P̊pk(F) the space of functions spanned by the Bernstein polynomials

associated with D̊pk(F):

P̊pk(F) := span
{
BF,p
α : α ∈ I̊pk

}
.

Proposition 3.5.34 showed us that the domain points on a triangle can be written as the
disjoint union of interior domain points on its subsimplices. In light of these arguments, it
comes to no surprise that

Pp(K) =

2⊕
k=0

⊕
F∈4k(K)

EFK P̊pk(F),

where

EFK P̊pk(F) := span
{
EFKB

F,p
α : α ∈ I̊pk

}
= span

{
BT,p
εFKα

: α ∈ I̊pk
}
. (3.5.38)

In words, the BB-basis of a triangle K decomposes into disjoint subsets associated with its
subsimplices. In the uniform case, this decomposition is not very interesting. It is, however,
crucial for finding a basis for the polynomial space of nonuniform degree.

The decomposition allows us to select an arbitrary local degree pF ∈ N, independently spec-
ified for each subsimplex F ∈ 4(K). Defining the local degree vector −→p :=

{
pF : F ∈ 4(K)

}
and the nonuniform polynomial space P−→p (K) it induces, we find the decomposition

P−→p (K) =
2⊕

k=0

⊕
F∈4k(K)

EFK P̊pFk (F).

72

A basis for this space flows naturally from the equality (3.5.38):

P−→p (K) =

2⊕
k=0

⊕
F∈4k(K)

span
{
BT,pF
εFKα

: α ∈ I̊pFk
}
.

Writing

I
−→p
K :=

2⊔
k=0

⊔
F∈4k(K)

{
εFKα : α ∈ I̊PFk

}
,

and noting that |α| = pF for all α ∈ I
−→p
K , we can formulate this basis in a very concise form.

Definition 3.5.39. Given −→p , the BB-basis for the space P−→p (K) is defined as

ΦBB
K,−→p :=

{
B
K,|α|
α : α ∈ I

−→p
K

}
. ♦

Example 3.5.40. Of course, the Bernstein polynomials in ΦBB
K,−→p are associated with points in

K := hull(v1,v2,v3), just like their uniform-degree counterparts. In Figure 3.5.42 we visualize
these points for the local degree vector

p123 = 4, p12 = 3, p23 = 2, p31 = 4, p1 = 0, p2 = 1, p3 = 3. (3.5.41)

Note that p1 = 0, which means that no global degree of freedom should be assigned to v1—it
lies on the domain boundary. ♦

v1

v2

v3

Figure 3.5.42.: Positions of the points on K := hull(v1,v2,v3) corresponding with the lattice

indices α ∈ I
−→p
K of Example 3.5.40.

Global basis induced by the nonuniform BB-basis

The above paragraph shows how to construct the basis functions of the BB-basis of nonuniform
order. However, we are mostly interested in applying this inside a FEM, in which case a global
basis needs to be constructed as well. The reason that hierarchical elements are the prime
choice for hp-FEM is the ease with which one constructs such a basis.

73

How does the nonuniform BB-basis fare in this setting? This is the crux of the matter:
The element basis from Definition 3.5.39 automatically gives a basis for the space V (D). For
instance, if K and K ′ share a k-subsimplex F ∈ 4k(K), then each α ∈ I̊pFk adds a Bernstein

polynomial to the basis. On F , its value is given by the Bernstein polynomial BF,pF
α in k + 1

variables; on K (resp. K ′), by BK,pF
εFKα (resp. BK′,pF

εFK′α) in 3 variables. The values of these
Bernstein polynomials agree on the common subsimplex F .

The above argument stems from the fact that each triangle containing F takes its local basis
function on this subsimplex from a basis function defined on F itself. Therefore, continuity of
the global basis functions is guaranteed by construction.

Raising the local degree

The basis we constructed in the previous paragraph is very easy and elegant, and by virtue of
Proposition 3.5.10, the element mass- and stiffness matrices are readily computed—we refer to
[3, §3] for a thorough review.

To make this basis useful in our hp-AFEM setting, one detail needs to be addressed. In hp-
NearBest, we construct a near-best approximation in a broken space of piecewise polynomials—
no boundary condition or continuity across edges is imposed.

Therefore, locally, this near-best approximation is not necessarily a member of the nonuni-
form space P−→p (K), but rather the full space Pp(K). Computing the broken error requires
us to compare the Galerkin solution with its near-best approximation; for this, we need an
expression of uD in terms of the local bases on full spaces PpD(KD).

In the hierarchical case, we construct a basis for the full polynomials space Pp(K) and “throw
away” basis functions along edges and in vertices to ensure that we span exactly P−→p (K). An
expression of uD in terms of the uniform local basis is then found by simply setting the
coefficients for Pp(K) \ P−→p (K) to zero.

Using the BB-basis however, we never construct the basis functions that span this comple-
ment Pp(K) \ P−→p (K), so in order to express uD in terms of the uniform BB-basis of degree
p := max−→p , we need to raise its degree on each subsimplex. Starting from Proposition 3.5.18,
one can derive that this is achieved by Algorithm 3.5.43; cf. [3, p.A559].

Require: polynomial v = v>ΦBB
K,−→p with coefficients vF,pFα for F ∈ 4k(K) (k = 0, 1, 2);

1: function RaiseDegree(
{

vF,pFα : α ∈ I̊pFk
}

for every F ∈ 4(K))

2: Initialize v
(min−→p −1)
α := 0 for α ∈ Imin−→p −1

2 ;
3: for p = min−→p , . . . ,max−→p do
4: // Raise global degree;

5: v
(p)
α :=

∑3
i=1

αi
p v

(p−1)
α−ei for α ∈ Ip2 ;

6: for all F ∈ 4k(K) with k = 0, 1, 2 such that pF = d do
7: // Consolidate coefficients on subsimplices of degree p;

8: v
(p)
εFKα = v

(p)
εFKα + vF,pFα for α ∈ I̊pFk ;

9: return
{

v
(max−→p)
α : α ∈ Imax−→p

2

}
.

Algorithm 3.5.43: Raising the degree of a polynomial in nonuniform BB-representation to uni-
form BB-representation; cf. [3, Alg. 3].

74

Conclusion

In this chapter, we studied multiple bases and looked at their properties. We found that the
Lagrange basis of §3.1 was not able to easily construct a basis for a nonuniform Galerkin space,
so we quickly dismissed it.

One obvious solution was to consider a hierarchical basis, where each basis for degree p+ 1
is created by adding elements to the basis of degree p. We looked at the Szabó-Babuška
basis, and saw that a natural basis for the Galerkin space follows, but that its conditioning
was unsatisfactory. We saw an improvement in conditioning by a slight modification, yielding
the Aiffa basis. Both hierarchical bases however suffer from the fact that its functions are
quite ugly, so that we have to resort to precomputing the induced matrices. This is again
unsatisfactory; it voids the near-best results of hp-AFEM.

However, the best results were found using the Bernstein polynomials introduced in §3.4.
We found that the uniform-degree BB-basis naturally allows computing these matrices on the
fly, and that there is a nice extension to the nonuniform case allowing us to construct a global
basis. Still, it is hard to control the conditioning, even though empirical evidence suggests this
ill-conditioning is not seen in practice.

Although the BB-basis is the best-looking solution, we will continue with the hierarchical
Aiffa basis, mainly because we found out about the BB-basis well after finishing the im-
plementation. The next chapter will shed some light on a few interesting details from this
implementation.

75

4. Practical considerations

The first two chapters of this thesis were purely theoretical, and the third chapter ventured
into more practical territory with the search for a local basis with favourable properties. We
found two promising examples; our implementation will be based on the hierarchical Aiffa basis
discussed in §3.4.2.

In this chapter, we will cover the more practical challenges found when implementing the
hp-AFEM algorithm using this hierarchical basis. We will first dive into the computation
of the quantities that we need. After that, we will have a short intermezzo on ensuring
interelement continuity of global basis functions. We finish with a discussion of the numerical
implementation.

4.1. Computing the necessary quantities

For the Bernstein-Bézier basis, we were able to derive the element mass- and stiffness matrix
in closed form on any triangle K ∈ K. Unfortunately, the construction of the Aiffa basis does
not allow this. We will have to resort to computing them on a reference triangle K̂, and use
the affine transformation FK to express the element matrices locally on K.

In the following, assume K := hull(v1,v2,v3) is a triangle with vertices vn = (xn, yn) for
n = 1, 2, 3.

Definition 4.1.1. The reference triangle K̂ we will be using is spanned by the vertices

v̂1 := (0, 0), v̂2 := (1, 0), v̂3 := (0, 1). ♦

This reference element has the nice property that the first two barycentric coordinates
(λ1, λ2) coincide with the local coordinates x̂.

Proposition 4.1.2. The affine mapping FK : K̂ → K satisfies

FK(x̂) =

[
x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
x̂ +

[
x1

y1

]
,

and for its Jacobian, we see ∣∣det(DFK)
∣∣ =

vol(K)

vol(K̂)
= 2 vol(K).

4.1.1. Reference to element matrices

We can compute the element mass matrixMD in terms of the reference mass matrix M̂p := M (K̂,4p)

by

MD
rs =

∫
K
φDr φ

D
s =

∣∣det(DFK)
∣∣ ∫

K̂
φ̂rφ̂s = 2 vol(K)M̂p

rs, (1 ≤ r, s ≤ 4p) (4.1.3)

where
∣∣det(DFK)

∣∣ is the determinant of the Jacobian of FK—cf. Proposition 4.1.2.

76

Moreover, we can write the element load vectors as

bDr = 2 vol(K)

∫
K̂
f̂ φ̂r, f̂ := f ◦ FK (1 ≤ r ≤ 4p).

If the forcing function f is a polynomial on K in that f |K = f>ΦD for some vector f , then
this load vector reduces to

bDr = 2 vol(K)f>(colr M̂
p) (1 ≤ r ≤ 4p). (4.1.4)

Proposition 4.1.5. The element stiffness matrix can be written as

AD =
1

2 vol(K)

(
C1Â

p
1 + C2Â

p
2 + C3A

p
3

)
where

C1 := (x3 − x1)2 + (y3 − y1)2, Âp1 :=

[∫
K̂

∂φ̂r
∂x̂

∂φ̂s
∂x̂

]4p
r,s=1

,

C2 := (x2 − x1)(x1 − x3) + (y2 − y1)(y1 − y3), Âp2 :=

[∫
K̂

∂φ̂r
∂x̂

∂φ̂s
∂ŷ

+
∂φ̂r
∂ŷ

∂φ̂s
∂x̂

]4p
r,s=1

,

C3 := (x2 − x1)2 + (y2 − y1)2, Âp3 :=

[∫
K̂

∂φ̂r
∂ŷ

∂φ̂s
∂ŷ

]4p
r,s=1

.

Proof. First, notice that by the chain rule

∇x :=

[
∂
∂x
∂
∂y

]
=

[
∂x̂
∂x

∂
∂x̂ + ∂ŷ

∂x
∂
∂ŷ

∂x̂
∂y

∂
∂x̂ + ∂ŷ

∂y
∂
∂ŷ

]
=

[
∂x̂
∂x

∂ŷ
∂x

∂x̂
∂y

∂ŷ
∂y

][
∂
∂x̂
∂
∂ŷ

]
= (DF−1

K)>∇x̂.

With this, we see that∫
K
∇xφ

D
r · ∇xφ

D
s =

∣∣det(DFK)
∣∣ ∫

K̂
∇xφ̂r · ∇xφ̂s

= 2 vol(K)

∫
K̂

((DF−1
K)>∇x̂φ̂r) · ((DF−1

K)>∇x̂φ̂s).

Defining the matrix

B :=
∣∣det(DFK)

∣∣ (DF−1
K)> =

[
y3 − y1 y1 − y2

x1 − x3 x2 − x1

]
(where the last equality follows from some simple pen-and-paper algebra), the above reduces
to

ADrs =
1

2 vol(K)

∫
K̂

(B∇x̂φ̂r) · (B∇x̂φ̂s).

Now noting that

B>B =

[
C1 C2

C2 C3

]
,

a little algebra yields the desired result.

77

4.1.2. Other useful equalities

Besides being necessary for the actual construction of the Galerkin solution, these matrices are
useful in computing a number of local quantities.

Proposition 4.1.6. Given some element D := (K, d). For v ∈ Pp(K), let v ∈ Rbdc4 be the
vector that realizes v = v>ΦD. Then

|v|2H1(K) = v>ADv, ‖v‖2L2(K) = v>MDv.

Moreover, the Aiffa basis elements satisfy

φ̂1 + φ̂2 + φ̂3 = 1; (4.1.7)

this is called a partition of unity. Therefore, given an element D := (K, d), the integral of a
basis element satisfies∫

K
φDr =

∫
K
φDr

 3∑
s=1

φDs

 =

3∑
s=1

∫
K
φDr φ

D
s =

3∑
s=1

MD
rs (1 ≤ r ≤ bdc4). (4.1.8)

4.1.3. Computing the h-transfer matrices

Given p ∈ N, we will construct the h-transfer matrices T h,kp . By Proposition 3.3.10, these
matrices are invariant under the choice of element domain K, so we will compute them on the
reference triangle K̂.

Let Φ̂p be a reference basis for the polynomials of degree p. Denote with K̂1, K̂2 the children
of K̂, and denote with Φ̂1

p and Φ̂2
p the bases on each child as induced by the affine mapping

FK of (3.3.2).
Recall that any polynomial in Pp(K) is uniquely determined by its point evaluations N p(K)

on the domain points Dp(K) =
{
dr : 1 ≤ r ≤ 4p

}
.

Lemma 4.1.9. For k = 1, 2, the matrix N p(K̂k)(Φ̂k
p) =

[
φks(dr)

]4p
r,s=1

is invertible.

Proof. Say there is a vector c := c1, . . . , c4p such that

N p(K̂k)(Φ̂k
p)c =

[∑
s csφ

k
s(dr)

]
1≤r≤4p

= 0.

These point evaluations N p(K̂k) are a basis for Pp(K̂k)′. Then by Lemma 1.2.2, we see that∑
s csφ

k
s must be the zero function. Because Φ̂k

p is a basis for Pp(K̂k), c must be the zero
vector. So the matrix must be invertible.

Definition 4.1.10. In light of the above, define Ψk
p to be the collection of functionals dual to

Φ̂k
p in that

Ψk
p(Φ̂

k
p) :=

[
ψr(φs)

]4p
r,s=1

= I4p .

Then

Ψk
p =

[
N p(K̂k)(Φ̂k

p)
]−1
N p(K̂k). ♦

78

Proposition 4.1.11. Choose k ∈ {1, 2}. Write φr for the elements in the reference basis
Φ̂p, and φkr for the functions in the basis Φ̂k

p. Write dkr for the points in Dp(Kk). Then the

h-transfer matrix T h,kp satisfies[
φks(d

k
r)
]4p
r,s=1

T h,kp =
[
φs(d

k
r)
]4p
r,s=1

. (4.1.12)

Corollary 4.1.13. This system can be solved uniquely thanks to the invertibility result of
lemma 4.1.9.

Remark 4.1.14. In light of Figure 3.4.12, the h-transfer matrices are very ill-conditioned.
Therefore it is most natural to compute the above matrices in exact arithmetic by means of
some symbolic package. This is a necessary evil: Symbolic inversion is prohibitively expensive
for large p ♦

Example 4.1.15. Choose the element D := (K̂, 3). The degree-1 Aiffa basis on K̂ is simply
the nodal basis

Φ̂1 =
{

(x, y) 7→ 1− x− y, (x, y) 7→ x, (x, y) 7→ y
}
.

The two child triangles of K̂ are then

K̂1 = hull

((
1
2 ,

1
2

)
, (0, 0), (1, 0)

)
, K̂2 = hull

((
1
2 ,

1
2

)
, (0, 1), (0, 0)

)
,

and their local bases satisfy

Φ̂1
1 =

{
(x, y) 7→ 2y, (x, y) 7→ 1− x− y, (x, y) 7→ x− y

}
,

Φ̂2
1 =

{
(x, y) 7→ 2x, (x, y) 7→ y − x, (x, y) 7→ 1− x− y

}
.

The domain points D1(K) are just the vertices of the triangle K, so that
[
φks(d

k
r)
]4p
r,s=1

= I3.

Some pen-and-paper computations then yield

T h,11 =
[
φs(d

k
r)
]4p
r,s=1

=

0 1
2

1
2

1 0 0
0 1 0

 , T h,21 =
[
φs(d

k
r)
]4p
r,s=1

=

0 1
2

1
2

0 0 1
1 0 0

 . ♦

4.2. The error functional

Recall the definition of the error functional in (2.2.5) given an hp-element D := (KD, dD):

eD(v) := |v − P pDv|2H1(KD) , (v ∈ H1(KD)),

where P p is the orthogonal projector onto Pp(KD)/P0(KD). In order to compute this value,
we choose the unique representative

w ∈ PpD(KD) with [w]P0(KD) = P pDv so that w = v

where w :=
∫
KD

w denotes the average value.
Inside hp-NearBest, we compute this error functional for a plethora of hp-elements D. Its

argument v will be the Galerkin solution uD on some conforming hp-triangulation D and is
fixed throughout one call to hp-NearBest. It is important to note that almost always, D 6∈ D:
If D ∈ D, then eD(uD) = 0 because uD is its own best approximation. We will touch on this
in more detail below.

In a few special cases, it is relatively easy to compute the error functional.

79

4.2.1. Special case

Originally, our error functional was only defined on elements D ∈ K × N. In §A, we showed
that for hp-NearBest to work on a triangulation with multiple roots, it was necessary to extend
this definition to the case d = 0, in which case we approximate uD on D with the zero function;
eD(uD) := |uD|2H1(K).

The value of eD(uD) can for d = 0 be found through a simple recursive routine: If uD is a
polynomial on K, we can invoke Proposition 4.1.6; if not, then we are sure uD is a polynomial
on some set of descendants of K, so we recurse. See also Algorithm 4.2.1.

1: function SquaredSeminorm(uD, K ∈ K)
2: if uD is a polynomial on K then
3: p := degree of uD on K; D := (K,4p) the hp-element;
4: find u such that uD|K = u>ΦD;
5: return u>ADu. . See Prop. 4.1.6

6: K1,K2 := children of K;
7: return SquaredSeminorm(uD,K

1) + SquaredSeminorm(uD,K
2); . Recurse

Algorithm 4.2.1: Recursive algorithm for the computation of |uD|2H1(K).

Noting that the H1(K)-seminorm measures gradients of functions, we see that

eK,1(uD) = |uD − α|2H1(K) = |uD|2H1(K) = eK,0(uD) (α ∈ R).

In other words, we are back in the previous special case. By b1c4 = b2c4 = 1, this holds even
for d = 2.

4.2.2. General case

When uD is a polynomial locally on KD, we write its degree as p(uD,KD).

Lemma 4.2.2. When on an element D = (K, dD), the Galerkin solution is a polynomial of low
enough degree—p(uD,K) ≤ pD—the local error functional vanishes. This special case happens
when for some D̃ := (KD̃, dD̃) ∈ D we have K ⊂ KD̃ and dD ≥ dD̃, or in words, when D
locally refines D.

Example 4.2.3. Let us look at a few typical examples. Let D be the triangulation depicted
in the left of Figure 4.2.4; each triangle carries a local complexity of 10.

Take the second figure from the left. If we take a large triangle, say K := K2 ∪K3, then
uD 6∈ P(K) so a global approximation of uD on K of degree 4 = p(15) will have positive error.

The third figure shows a situation where uD is a polynomial on a small triangle K, but best
approximation of degree 2 = p(6) on the element D := (K, 6) still has positive error.

The last figure shows the situation of Lemma 4.2.2: uD is a polynomial on K, and the degree
4 = p(15) is ≥ p(uD,K) = p(10) = 3. So in this case, we will achieve zero error. ♦

The above lemma gives us the case where computing the error functional vanishes. In other
cases, we will compute eD(uD) by noting that

eD(uD) =
∣∣uD − P pD(uD)

∣∣2
H1(KD)

= min
{w∈PpD (KD):w=uD}

|uD − w|2H1(KD) ,

80

hp-triangulation DuD 6∈ P2(K)

(K1, 10)

(K2, 10)

(K3, 10)

(K4, 10)

uD 6∈ P4(K)

(K, 15)

uD 6∈ P2(K)

(K, 6)

uD ∈ P4(K)

(K, 15)

Figure 4.2.4.: Left: an hp-triangulation D; imagine its Galerkin solution uD. To the right:
three typical situations within hp-NearBest.

where we will explicitly construct the unique minimizer

m(uD, D) := arg min
{w∈PpD (KD):w=uD}

|uD − w|2H1(KD) .

Note that m(uD, D) ∈ PpD(KD), so there is some m ∈ RbdDc4 so that m(uD, D) = m>ΦD.
Finding the minimizer is equivalent to finding

m ∈ RbdDc4 s.t.
∣∣∣uD|KD −m>ΦD

∣∣∣2
H1(KD)

is minimal, given

∫
KD

m>ΦD =

∫
KD

uD.

This problem is again equivalent to finding the unique stationary point (m, λ) of the Lagrangian

Λ(m, λ) :=
1

2

∣∣∣uD −m>ΦD

∣∣∣2
H1(KD)

+ λ

∫
KD

(m>ΦD − uD). (4.2.5)

Proposition 4.2.6. The stationary point (m∗, λ∗) of (4.2.5) is its saddlepoint. It holds that

∇m,λΛ(m∗, λ∗) = 0 ⇐⇒

[
〈∇ΦD,∇ΦD〉L2(KD)

∫
KD

ΦD

(
∫
KD

ΦD)> 0

]
︸ ︷︷ ︸

=:L

[
m∗

λ∗

]
=

[
〈∇ΦD,∇uD〉L2(KD)∫

KD
uD

]
︸ ︷︷ ︸

=:b

.

(4.2.7)

Proof. A little algebra yields that

∂Λ

∂λ
= 0 ⇐⇒

∫
KD

uD =

∫
KD

m>ΦD

and

∂Λ

∂m
= −〈∇uD,∇ΦD〉L2(KD) + 〈∇ΦD,∇ΦD〉L2(KD)m + λ

∫
KD

ΦD = 0

⇐⇒ 〈∇ΦD,∇ΦD〉L2(KD)m + λ

∫
KD

ΦD = 〈∇uD,∇ΦD〉L2(KD).

Combining yields the result.

81

Remark 4.2.8. Given that the matrix and right-hand side are known, we can solve the above
problem using a direct solver: The problem is local, hence its size is small (' dD × dD). In
our implementation, a column-pivot Householder QR is used; MINRES is also possible. ♦

Remark 4.2.9. Even though a single computation is quick, we perform it around N logN to
N2 times (where N is the complexity of the triangulation found by hp-NearBest). In Chapter 5,
we will see that these computations make up the majority of the total computation time of
hp-AFEM; therefore, it makes sense to optimize the routine.

Given an hp-element D, one can show that for any triangle K ′ congruent to KD (in that
K ′ = αKD + v0 for some α > 0,v0 ∈ R2), the following holds for the element D′ := (K ′, dD):

〈∇ΦD′ ,∇ΦD′〉L2(K′) = 〈∇ΦD,∇ΦD〉L2(KD),

∫
K′

ΦD′ = α2

∫
KD

ΦD.

Therefore, with L = L(D) the matrix from (4.2.7), we find that for the minimizer on D′,

L(D′)

[
m∗

λ∗

]
=

[
〈∇ΦD′ ,∇uD〉L2(K′)∫

K′ uD

]
⇐⇒ L(D)

[
m∗

α2λ∗

]
=

[
〈∇ΦD′ ,∇uD〉L2(K′)

(
∫
K′ uD)/α2

]
.

In words, the problem of finding the minimizer on D′ can be restated in terms of the
Lagrangian matrix on D. Newest vertex bisection has the property that each element domain is
in one of a small number of congruence classes (≤ 4#K(D0), with D0 the initial triangulation).
We can explicitly precompute a factorization of the matrix for a representative in each such
class, allowing us to solve for the minimizer much more quickly.

We chose not to implement this yet, because it adds another layer of complexity to an already
highly complex implementation, but it does provide ideas for future versions. ♦

4.2.3. The Lagrangian system

The top-left block of the matrix in (4.2.7) is simply the element stiffness matrix AD found
through Proposition 4.1.5. The elements of the vector

∫
K ΦD are found through (4.1.8)

and (4.1.3).
The right-hand side of the system in (4.2.7) is harder, as it relies on whether or not uD is

a polynomial locally on the element domain of D := (K, dD). When it is, the triangulation D
that defines uD must contain some element D̃(D) := (KD̃, dD̃) for which K ⊂ KD̃—this is the
middle case of Figure 4.2.4. Our computations require the local coefficient vector u of uD|KD̃
(in that uD|KD̃ = u>ΦD̃(D)).

Without loss of generality, assume K = KD̃; otherwise we can bisect D̃(D) until the do-
mains do coincide, at each bisection transfering the local coefficient vector using the h-transfer
matrices. This yields a tactic similar to Algorithm 4.2.1.

By Lemma 4.2.2, the case where dD̃ ≤ dD is trivial. Therefore, we can assume that
pD̃ = p(uD,K) > pD.

In our hierarchical case, element mass- and stiffness matrices on D are the top-left block of
those on D̃(D). This implies the following result.

Proposition 4.2.10. Take some element D := (K, dD). If uD is a polynomial, then it is
defined on some element D̃(D) with KD̃(D) = K and pD̃(D) > pD—this is the middle case of
Figure 4.2.4.

82

Take u ∈ RbdD̃(D)c4 the local coefficient vector of uD on K. Then

〈∇ΦD,∇uD〉L2(K) = ÃD̃(D)u,

where ÃD̃(D) is the top-left block of AD̃(D) of size (bdDc4 × bdD̃(D)c4).
Moreover, ∫

K
uD = u>ED̃(D)

where

ED̃(D)
r :=

3∑
s=1

M D̃(D)
rs , (1 ≤ r ≤ bdD̃(D)c4).

Remark 4.2.11. Note that the above result only holds for our specific hierarchical basis. ♦

When the Galerkin solution uD is not a polynomial on K—corresponding to the first case
of Figure 4.2.4—things get a little trickier. The recursive relation∫

K
uD =

(∫
K1

+

∫
K2

)
uD,

{
K1,K2

}
children of K (4.2.12)

shows that we may traverse down the binary tree until an element on which uD is a polynomial
is found, thus finding

∫
K uD. This algorithm is akin to Algorithm 4.2.1.

We can employ a similar strategy for the inner product vector. The following result con-
necting bases on children elements will prove useful. Given D := (K, dD), define its two child
elements by D1 := (K1, dD) and D2 := (K2, dD), where K1,K2 are the children of K. By
linearity of the h-transfer matrices, we deduce from Proposition 3.3.9 that

∇ΦD|Kk = (T h,k)>∇ΦDk , (k = 1, 2).

With this result, the inner product vector decomposes to a sum of those vectors on child
elements:

〈∇ΦD,∇uD〉L2(K) = 〈∇ΦD,∇uD〉L2(K1) + 〈∇ΦD,∇uD〉L2(K2)

= 〈(T h,1)>∇ΦD1 ,∇uD〉L2(K1) + 〈(T h,2)>∇ΦD2 ,∇uD〉L2(K2)

= (T h,1)>〈∇ΦD1 ,∇uD〉L2(K1) + (T h,2)>〈∇ΦD2 ,∇uD〉L2(K2).

A traversal analogous to Algorithm 4.2.1 then yields the result.

4.2.4. From minimizer to error functional

Assume we have our minimizer m (the Lagrange multiplier λ plays no role). Producing eD(uD)
from m is again done using a recursive tactic like Algorithm 4.2.1.

When uD|K = u>ΦD̃(D) is a polynomial, we transfer the coefficient vector m to the element

D̃(D) through repeated application of the p-transfer matrix—in our hierarchical case, this
reduces to appending m with zeros—yielding a vector m̃. Then, through Proposition 4.1.6,
we find

eD(uD) =
∣∣∣uD −m>ΦD

∣∣∣2
H1(K)

=
∣∣∣u>ΦD̃(D) −m>ΦD

∣∣∣2
H1(K)

=
∣∣∣u>ΦD̃(D) − m̃>ΦD̃(D)

∣∣∣2
H1(K)

= (u− m̃)>AD̃(D)(u− m̃).

83

Summary

We summarize this section in the flowchart of Figure 4.2.13.

ComputeError(D = (K, d))

d = 0, 1, 2 (§4.2.1)
compute |uD|2H1(K)

(Alg. 4.2.1)
return |uD|2H1(K)

uD|K ∈ P(K) &
p(uD,K) ≥ p(d)

return 0.0 (Lem. 4.2.2)

compute L,b
((4.2.7), §4.2.3)

solve Lm = b
(Remark 4.2.8)

compute eD(uD) =∣∣∣uD −m>ΦD

∣∣∣2 (§4.2.4)

return eD(uD)

no

yes

no

yes

Figure 4.2.13.: Computing the error functional. Each doubly-bordered rectangle calls a recur-
sive subroutine similar to Algorithm 4.2.1.

84

4.3. Interelement continuity

In Definition 3.4.5, we saw that the edge functions of the Szabó-Babuška- and Aiffa basis
depend on the orientation of the edge it is associated with. From the definition:

φK,e1,q(λ) :=

{
λ2λ3Eq(λ3 − λ2) when v2 = ve11

λ2λ3Eq(λ2 − λ3) when v3 = ve11

, Eq(x) = −8
√

4q − 2

q(q − 1)
P ′q−1(x).

We effectively negate the argument of Eq when the global orientation of e1 does not agree with
its local orientation on K. Noting that each edge can be in one of two orientations, with three
such edges, we end up with a total of 23 = 8 different arrangements or element types. The
effect is that, for instance, the element stiffness matrices of two neighbouring triangles have to
be computed from different reference matrices.

Before we continue discussing this problem, let us first explore an elegant solution mentioned
by Demkowicz in [18, p. 170]. Noting that Lagrange derivatives satisfy

P ′p(−x) = (−1)pP ′p(x),

we see that Eq is an even function when q is even, and odd when q is odd. Therefore, the
following holds:

φK,e1,q(λ) =

{
λ2λ3Eq(λ3 − λ2) when v2 = ve11 or q is even

−λ2λ3Eq(λ3 − λ2) when v3 = ve11 and q is odd.

This insight yields that the reference matrices differ in sign only.
After coming across this problem, and not yet having read the above book, we came up with

our own solution. Our solution is less practical and more error-prone but it is so ingrained in
the implementation that we cannot change it any more.

Given an element D, every possible element type can be associated with a unique binary
3-vector t(D) ∈ {0, 1}3. We can then assign element types t(D) to each element D in a
triangulation in such a way that the triangulation is correctly typed—that the orientation of
an edge shared between two elements is different on both elements locally (in terms of t(D), a
0 must be matched with a 1).

Proposition 4.3.1. For each conforming triangulation D ∈ Dc, one can choose the element
types

{
t(D) : D ∈ D

}
so that the triangulation is correctly typed.

Proof. The proof is simple and constructive. Order the set of elements into a list (Di)
#K(D)
i=1 .

We then iterate for each i, for each j ∈ {1, 2, 3}. If there is no neighbour across edge ej , or the
neighbour Dk has k > i, just set t(D)j = 0. Else, set t(D)j = 1.

By conditioning over k ≶ i, we change the orientation on exactly one of the two local
edges.

Recomputing element types after each subdivision can void the Galerkin solution coeffi-
cients. Instead, assign types to children elements D1, D2 in terms of their parents element
type t(D) = {x, y, z}, by setting

t(D1) := {¬x, x, y} , t(D2) := {y, z, x} , (4.3.2)

cf. Figure 4.3.3. We have the following result.

85

zx

y

∂Ω

bisect

∂Ω

y

¬xx

y

zx zx

y

¬y

bisect

y

¬xx

y

zx

¬y ¬y

Figure 4.3.3.: Visual aid for (4.3.2). Left: case where D has its refinement edge along ∂Ω.
Right: D has a neighbour across this edge.

Proposition 4.3.4. Given a correctly typed triangulation D ∈ Dc, any conforming refinement
of D in which D ∈ D is bisected through (4.3.2), is again correctly typed.

Proof. The Refine routine of Algorithm 1.5.17 (constructing the smallest conforming refinement
given a set of marked elements) is recursive in nature, and has two possible base cases: Either
the refinement edge of D is on the domain boundary, or there is a neighbour across from this
edge. In the first case, application of (4.3.2) results in a correctly typed refinement: exactly
one of x,¬x is equal to 1.

In the second case, applying (4.3.2) to both refined children at once creates two extra edges,
both carrying y and ¬y; the same argument applies. Therefore, by recursion, the statement
holds.

4.4. Implementation

This project features a fully working implementation of hp-AFEM. Broadly speaking, there are
three independent components to this software.

The precomputation module creates the h-transfer matrices, and the element mass- and stiff-
ness matrices; it is written in C++11 (using the symbolic algebra package GiNaC [7])
and Mathematica [48];

The library implements hp-AFEM in C++11 (using the linear algebra package Eigen [23]), and
includes a few proof-of-concept applications;

The plotter is capable of parsing output generated by the library, allowing the creation of plots
of the triangulation and solution. It is written in Python 2.7 (using, mainly, matplotlib
[1]).

The library code is inspired by the finite element package FEniCS [5], but it does not share the
code. The basic requirements (hierarchical basis, triangular elements, coarsening step) seemed
too specific at the time.

4.4.1. The precomputation module

Earlier versions of this project were based on precomputations in MATLAB, for its simplicity
and relative speed. However, we saw that with high-degree polynomials, MATLAB is too

86

inaccurate for our needs: The h-transfer matrices are very ill-conditioned (cf. Figure 3.4.12),
so their computation through Proposition 4.1.11 falls apart with just 16 digits of precision.

For this reason, the precomputation module was rewritten in C++ with a symbolic algebra
package to compute the matrices in exact arithmetic. We however saw that solving (4.1.12)—on
top of being very ill-conditioned—is very computationally expensive. Even degree 9—involving
symbolic systems of size 55× 55—was already intractable using the various symbolic packages
we tried. A more sophisticated approach was necessary.

The final version works by computing the mass- and stiffness matrices in C++, and also
computes the known matrices of (4.1.12) symbolically. These symbolic matrices are then loaded
into Mathematica, known for its excellent symbolic algorithms, which can solve the system for
degrees up to 20 (size 231× 231) in a few hours. This is of course fine—a basis only needs to
be computed once.

The fact that our basis is hierarchical makes it possible to compute only the highest-degree
matrices and take the top-left blocks for the lower-degree counterparts.

Expressing piecewise polynomial forcing functions in the hierarchical basis

To humans, the preferred polynomial basis is often the monomial basis. This allows expressing,
for instance, the forcing function f as

f : Ω→ R : (x, y) 7→ x(1− x)y(1− y).

Our hp-AFEM library however requires expressing all input in terms of the hierarchical basis.
Using a construction similar in taste to that of the h-transfer matrices, we are able to pre-
compute a matrix allowing fast conversion between the hierarchical and monomial basis. The
forcing function, expressed in the hierarchical basis, is stored with the initial triangulation and
serves as input for hp-AFEM.

File format

A triangulation D is uniquely determined by the tuple (V, T) where V ∈ RV×2 defines the

location of each vertex inside D, and T ∈ N#K(D)×5
0 defines the triangles as follows. Each row

represents an element D ∈ D; the first three numbers represent the indices inside V of its three
vertices, the fourth number its initial local complexity dD, and the last number its element
type t(D).

A piecewise polynomial defined on this triangulation is stored through a vector fD ∈ RbdDc4
of the basis coefficients for each D ∈ D.

4.4.2. The library hp-AFEM

The library is written in C++11, making heavy use of object-oriented programming principles.
It is partitioned into the following submodules.

I/O handles reading and writing the triangulations, matrices, and other various input/output;

ElementTree stores and manages hp-triangulations in-memory;

DoFHandler manages local and global degrees of freedom;

NearBest implements hp-NearBest from Algorithm 2.2.12;

87

Reduce implements Reduce from §2.3;

FEM builds the finite element system, calls the solver, and manages the solution;

See Figure 4.4.1 for a dependency graph of the modules inside the library, together with the
h-AFEM and hp-AFEM applications.

Figure 4.4.1.: Dependencies of the different modules within the hp-AFEM library, together with
two applications.

Numerical accuracy

As we will see in the next Chapter, the hp-AFEM algorithm needs quite a few iterations to get
into the convergent region. As a result, the finite element spaces we will be looking at can grow
quite large, with up to 400K degrees of freedom. The main cause of deterioration at this point
is, besides the time needed to solve systems this big, numerical accuracy. We therefore chose
to work with extended precision floating point numbers, using 80 bits of memory, as opposed
to the standard double precision with 64 bits. This grows the mantissa size from 53 bits to 64,
thus decreasing the machine epsilon from 2−53 ≈ 1.11 · 10−16 to 2−64 ≈ 9.63 · 10−19.

Finite element solver

From a theoretical standpoint, solving the Galerkin system is easy. From a more implementa-
tional point of view, this is far from trivial. Assembling and storing the stiffness matrix has to
be done carefully as to not go out of memory; sparse matrix classes are provided by the Eigen
linear algebra package [23].

The linear algebra library stores matrices in the form of a list of (row, column, value)-tuples,
allowing repetition of row and value. This list is constructed by appending every nonzero entry
of every local stiffness matrix. We use a direct solver which employs the LDL>-decomposition
of the global stiffness matrix; see [24, Solving Sparse Linear Systems]. It is also possible to use
an iterative solver, but one has to take care defining a good initial guess and stopping criteria.
We opted not to take this route.

88

Storing elements

An instance of hp-AFEM will, during its lifetime, create millions of elements in-memory. To
avoid going out of memory, we employ the Flyweight design pattern—cf. [20]—storing only
the essential information of an element. The rest (element stiffness matrix, for instance) is
recomputed at each method call.

Development

Valgrind [36] was used to profile the memory and CPU-cycle usage of each method inside the
running application. This was very important in the development phase, helping to find critical
loops and memory leaks. GDB [41] was used to debug the software and helped development
velocity significantly.

4.4.3. Plotter

The plotter is coded mainly in Python. Its main use is to plot triangulations, but it is also
capable of producing 3D plots of the Galerkin solution and convergence graphs. It imports the
files that the applications output, and was invaluable spotting mistakes in the algorithm.

89

5. Numerical results

In the previous chapters, we laid out all the necessities for a correct implementation of hp-
AFEM. In this chapter, we will study some of the numerical results found using this implemen-
tation.

All coming paragraphs will in some way solve the Poisson problem of (1.1.9). We will study
different (polygonal) domains Ω ⊂ R2; even for the simple forcing function f = 1, some domains
carry very interesting problems. The canonical domain in this case is L-shaped; the re-entrant
corner introduces a singularity in the solution—see below for a more detailed analysis.

We will look at various forcing functions f ∈ L2(Ω), but we will confine ourselves to the
piecewise polynomials, and in many cases even global polynomials f ∈ P(Ω).

To overcome some of the numerical instabilities, we will use extended precision floating point
numbers (also known as long doubles), which pairs nicely with the direct solver of choice. See
§4.4.2 for a short discussion on these two considerations.

It has to be noted that the implementation currently suffers from the problem discussed in
§3.4.3 regarding a maximum degree. In our case, this maximum is 20. This is high enough
for hp-AFEM to exhibit the desired exponential decay in all considered cases—as we will see
in the coming paragraphs—but it is problematic from a theoretical point of view.

We saw in Corollary 2.4.10 that this decay—the error norms decay like exp(−η(# DoF)τ)—is
in terms of two parameters, η and τ . In their seminal paper, Guo and Babuška [27, Thm. 2.1]
show that in 2 dimensions, τ = 1/3; plotting the logarithm of the error against # DoF1/3

should then show us a straight line. The slope η of this line is problem-dependent, and
therefore usually not known in closed form.

Another shortcoming of this implementation is the choice of error estimator: The simple
refinement error estimator of §1.4.1 is not reliable, so we have little theory to back up our
error estimations. Still, in practice, the results are very good—see [46, §5.3] for a short review
in the uniform h-case.

The default algorithm parameters are as follows.

• The refinement error estimator reference solution is found by two uniform h-refinements;

• In Reduce, the Dörfler parameter is set to θ := 0.8;

• In hp-AFEM, the coarsening factor is ω := 4, the reduction parameter is µ := 1
2 , and the

final tolerance is ε := 0, as to never stop iterating.

Finally, the choice of reduction factor ρ := µ/(1+CB(D∗k)ω) inside hp-AFEM is necessary for
proving the convergence behaviour and is the result of compounded worst-case assumptions.
In practice, we found that simply picking ρ := µ results in exponential decay as well.

90

5.1. Known solution

Our first numerical example is to test our hp-AFEM application with a few known solutions of
the form

un : Ω→ R : (x, y) 7→ (x y (1− x) (1− y))n, Ω := (0, 1)2. (5.1.1)

We choose n ∈ {1, . . . , 5}; n > 5 is not supported by the implementation (cf. §3.4.3).
Triangulate Ω with two triangles,

K :=
{

Ω ∩ {x+ y ≤ 1} ,Ω ∩ {x+ y ≥ 1}
}

and equip both triangles with d = 6 degrees of freedom (in view of the homogenous Dirichlet
boundary conditions, this ensures one global degree of freedom) yielding an hp-triangulation
D0.

For each n, our Poisson solution un is a polynomial of degree 4n, so we can expect the
approximation error to be zero locally when pD ≥ 4n for some element D in a triangulation
D ≥ D0. The hp-NearBest routine will then decrease this degree, hopefully coarsening it to
pD = 4n. We expect that after a modest number of iterations of hp-AFEM, the estimated
error drops to machine precision. The minimal number of global degrees of freedom we need
to achieve true zero error is (4n− 1)2, corresponding with two triangles of degree 4n.

We run hp-AFEM, at each iteration storing the Galerkin solution unk on the hp-triangulation
Cnk := C(D∗k)n, which is defined as the smallest conforming refinement of the output triangula-
tion of hp-NearBest.

Figure 5.1.2.: Progression of the (estimated) error norms of the hp-triangulations C(D∗k) pro-
duced by hp-AFEM, for the Poisson problems specified by (5.1.1). Left: error
norms as a function of k. Right: error norms as a function of # DoF. The boxes
on the # DoF-axis denote the special values (4n− 1)2.

In Figure 5.1.2, the (estimation of the) error
∥∥un − unk∥∥H1

0 (Ω)
is plotted as a function of

(left) k, and (right) dimV (Cnk) = # DoF(Cnk). In the left figure, we see that this progression
plateaus after a number of iterations, and following the dotted lines to the right, we see that

91

these triangulations carry exactly # DoF(Cnk) = (4n − 1)2 degrees of freedom. In light of the
previous, this means that hp-AFEM finds these optimal triangulations for which the true error
is zero! Positivity of the estimated error stems from the fact that we are solving a perturbed
problem which carries a non-polynomial true solution. This perturbation is due to instability of
the h-transfer matrix: We transfer the load vector to refined triangulations, thereby applying
the (ill-conditioned) h-transfer matrix multiple times.

In the right figure, we see that the complexity of the triangulations is not always monotonic
in k; the whimsical nature of hp-NearBest makes its output unpredictable.

It is interesting to see that hp-AFEM finds the true solution in 2 iterations for n = 1, in 7
iterations for n = 2, in 13 for n = 3, in 15 for n = 4, and doesn’t converge at all for n = 5. For
n = 4, we see that a lower estimated error is achieved in iteration k > 19, after the plateau;
this is again a side-effect of solving a perturbed problem.

5.2. L-shaped domain and first run of hp-AFEM

In the remainder of this chapter, we will solve the Poisson
problem with forcing function f = 1 on the L-shaped domain.
In formula form:{
−4u = 1 on Ω

u = 0 on ∂Ω
with Ω := (−1, 1)2 \ [0, 1)× (−1, 0].

We define the initial triangulation D0 as six triangles that are
simple translations and rotations of each other, each equipped
with quadratic polynomials. See the illustration on the right.

This domain has a re-entrant corner which induces a strong singularity in the solution, so
that u 6∈ H2(Ω). The solution u also exhibits mild singularities in the salient (non-reentrant)
corners. Owing to the fact that u ∈ H2(Σ) for all Σ with Σ ⊂ Ω, we expect little refinement
away from the corners, with strong h-refinement towards the re-entrant corner and milder
h-refinement towards the others.

5.2.1. Error progression

Let us run the application using the default settings. See Figure 5.2.1 for two graphs of its error
progression. The right graph shows that the most time-consuming step within each iteration
is the call to hp-NearBest (denoted by the segment connecting a • with a ×). In fact, further
analysis shows that in each iteration, upwards of 90% of the time is spent within hp-NearBest.
This routine is the obvious bottleneck of the algorithm.

Looking at the left graph, we see a clear partition of the results. Below the dotted line, a
clear exponential decay in terms of # DoF1/3 is visible: Connecting the ×-markers yields a
straight line. This is the asymptotic regime. Within the asymptotic regime, the slope of the
line is −0.312: The error decays like exp(−0.312(# DoF)1/3).

Above the dotted line is the preasymptotic regime. The triangulations produced here are
just too small to be approximated by the algorithm in a true near-best way. This is underlined
by the fact that # DoF is not monotonically increasing.

92

Figure 5.2.1.: Error progression of the triangulations produced by hp-AFEM on the model
problem, using default parameters. Left: progression as a function of # DoF1/3;
right: as a function of time. An × denotes the output triangulation of hp-
NearBest; • a triangulation within Reduce.

5.2.2. Addressing some problems in the theory

To get a feel for the qualitative properties of these near-best triangulations, let us look at a few
in more detail. In Chapter 2, we identified a couple of issues with the theory. More specifically,
we saw that

• We cannot bound the increase in total complexity when computing the smallest conform-
ing refinement of an hp-triangulation;

• We lose a logarithmic factor in going from the broken error on a near-best triangulation
to the energy error norm on its smallest conforming refinement;

• Had we used the Melenk-Wohlmuth error estimator, we would have had to restrict our
definition of conformity to comparable triangulations, where the quotient of local com-
plexities of neighbouring elements is bounded;

• Had we defined our reduction factor as ρ := µ/(1 + CB(D∗k)ω), we would have seen a
(slight) rise in the number of iterations inside Reduce.

We investigate these problems by looking at a few associated quantities, for a few triangulations
found by hp-AFEM. See Table 5.2.2; it is partitioned into three segment, each discussing a
different set of properties.

The first segment

The top segment shows basic properties of the triangulations. The triangulation of k = 15
jumps out; we will discuss it in a second. Apart from this oddity, we see that both error and
total number of degrees of freedom are monotonic, and that the maximum polynomial degree
is monotonic inside the asymptotic regime.

93

k = 1 k = 5 k = 15 k = 16 k = 25 k = 33
Preasymptotic regime Asymptotic regime

DoF 5 336 5139 4615 16314 36655∥∥∥u− uC(D∗k)

∥∥∥
H1

0 (Ω)
1.86e−1 1.02e−2 1.82e−5 4.82e−6 8.81e−9 3.41e−11∥∥∥pD∗k∥∥∥∞ 2 11 20 9 12 16

max
{
η(D)

}
/min

{
η(D)

}
2.17 46.1 601 41.9 20.5 8.66

% time in NearBest 99% 73% 92% 96% 95% 93%

#C(D∗k)/#D∗k 1.42 1.49 1.63 1.23 1.16 1.12
Broken error quotient 0.523 0.162 0.172 0.105 0.130 0.115
Comparability quotient 1 5.5 10 4.5 6 8
iters in Reduce 5 6 4 4 3 2

Table 5.2.2.: Various interesting quantities for a selection of the triangulations produced by
hp-AFEM with default settings on the model problem.

The middle segment

In the middle segment, two quantities are shown. Firstly, we see that max(η)/min(η)—the
quotient of maximum and minimum local estimated errors—is fairly small, suggesting that
hp-NearBest is doing a good job in homogenizing local errors over the domain. Moreover, this
becomes better for larger triangulations.

Concurrently, we see that within this single iteration of hp-AFEM, at least 90% of the time is
spent within the hp-NearBest routine. This again underlines that we may expect the application
to become 10 to 20 times faster if we optimize this step.

The final segment

The bottom segment quantifies the concerns raised previously. The top row suggests that in
going from D∗k to its smallest conforming refinement, we only see a modest increase in total
number of DoFs; certainly not unbounded.

Theorem 2.2.16 shows that

inf
w∈V (C(D))

‖v − w‖H1
0 (Ω) ≤ CB(D)ED(v)1/2 (v ∈ H1

0 (Ω)), CB(D) h (1 + log‖pD‖∞)3/2.

From this, we deduce that

infw∈V (C(D∗k))

∥∥∥uDk−1
− w

∥∥∥
H1

0 (Ω)(
1 + log

∥∥∥pD∗k∥∥∥∞
)3/2

ED(uDk−1
)1/2

. 1,

with smaller values being more favourable. The second row of the final segment inside Ta-
ble 5.2.2 shows this quotient. We see that these values are all well below one, suggesting that
this “logarithmic increase in error” is a worst-case rather than typical-case scenario.

The third row displays the largest quotient of neighbour complexities. This maximum is
attained between an element on a salient corner (endowed with a very high degree) and its

94

(degree-2) non-corner neighbour; see Figures 5.2.3 and 5.2.4 for examples. This would pose a
definite problem when using the Melenk-Wohlmuth error estimator and truly taking k → ∞;
in our case, it is of little interest.

The final row shows the number of iterations within Reduce. Of course, our reduction
parameter is fixed at ρ := µ and not dependent on ‖pD‖∞, but still, it is remarkable to see
that the number of iterations decreases rather than increases as triangulations become bigger.

The case k = 15

Looking at this table, k = 15 immediately pops out. Visual inspection of the triangulation
shows why its values are different from the others: hp-NearBest returns a nonconforming
triangulation with a very large and high-degree element, so its smallest conforming refinement
contains a lot more degrees of freedom and is much less near-best. This is essentially the case
of Example 2.2.14, thus explaining the (relatively) large #C(D∗k)/#D∗k, as well as the large
difference in local estimated errors.

5.2.3. Two near-best triangulations

Let us look at two triangulations visually: The tipping point triangulation—see the red box in
Figure 5.2.1—and the final triangulation found by hp-AFEM. We plot the full triangulation,
with zoom-ins into the corners that show strong h-grading.

Properties of the tipping point triangulation

Denote with DTP the triangulation on the tipping point between these two regimes. This
tipping point triangulation is found at iteration k = 16 of hp-AFEM, after around 3 hours
of runtime. It carries a total of # DoF(DTP) = 4615 degrees of freedom, with estimated
error

∥∥u− uDTP

∥∥
H1

0 (Ω)
≈ 4.825 × 10−6. Its maximum polynomial degree is

∥∥pDTP

∥∥
∞ = 9. In

Figure 5.2.3, this triangulation is shown: The top shows the hp-triangulation itself, and the
bottom shows the (estimated) error on each element.

We see from the top figure that DTP is very symmetrical. It has large, high-degree elements
in the interior of the domain, which corresponds with a smooth local solution. In the salient
corners, we see slight h-refinement, which is due to the (mild) singularities of u. Stronger
h-grading is seen near the re-entrant corner—there is a strong singularity here. As we get
closer to a corner, the local solution gets progressively more singular and hence cannot be
approximated well by (high-order) polynomials.

We note that, remarkably, the algorithm opts for strong p-enrichment in the triangles directly
adjacent to a corner. This is behaviour we cannot explain; conventional wisdom tells us these
degrees of freedom would be better spent on h-refinement.

From the bottom figure, it is obvious that this total error is governed by the errors of the few
triangles touching the corners. Looking at the color bar, we see that the errors are distributed
fairly homogenously, in that the errors are all within two orders of magnitude from each other.
This signals to us that the routine hp-NearBest is doing a good job distributing the total error
evenly across all elements.

95

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Polynomial degrees in triangulation zoom 102

zoom 104

zoom 106

2

3

4

5

6

7

8

9

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

10-log of estimated errors in triangulation zoom 102

zoom 104

zoom 106

7.6

7.4

7.2

7.0

6.8

6.6

6.4

6.2

Figure 5.2.3.: The tipping point triangulation DTP. Left: the full triangulation. Right: the
reentrant corner, for various zoom levels.

96

Properties of the final triangulation

For completeness, let us also consider the triangulation found in the very last iteration of
hp-AFEM—we killed the application after this result. It is found after 33 iterations, requiring
upwards of 40 hours to compute. The total number of degrees of freedom is 36655, with
estimated error 3.407 × 10−11. Its maximum polynomial degree is 16. See Figure 5.2.4 for a
visualization.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Polynomial degrees in triangulation zoom 104

zoom 109

zoom 1014

2

4

6

8

10

12

14

16

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Polynomial degrees in triangulation zoom 101

zoom 102

zoom 103

2

4

6

8

10

12

14

16

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

10-log of estimated errors in triangulation zoom 104

zoom 109

zoom 1014

12.4

12.2

12.0

11.8

11.6

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

10-log of estimated errors in triangulation zoom 101

zoom 102

zoom 103

12.4

12.2

12.0

11.8

11.6

Figure 5.2.4.: The final triangulation found in hp-AFEM with default parameters. Left: the
full triangulation. Middle: the reentrant corner, for various zoom levels. Right:
the top-right salient corner, for various zoom levels.

There are a lot of similarities between the final triangulation and the tipping point triangula-
tion of the previous paragraph. Again we see h-refinement towards the corners of the domain,
and p-enrichment for the triangles directly adjacent to a corner.

Remarkable is the very strong h-grading towards the origin; a zoom level of 1014 was needed

97

to display the smallest triangles. The size of this triangulation required us to zoom in to a
salient (not re-entrant) corner as well. Here, we see a strong p-grading (elements of degree 16),
much stronger than for the re-entrant corner (degree 8). This is in contrast with the tipping
point triangulation, where we saw elements of degree 9 in the salient corners with degree 8 in
the re-entrant one.

From the bottom graph, we see that the total error is again governed by local errors in the
corners. The distribution is even better than in the tipping point triangulation, with errors
all within one order of magnitude from each other. This again shows that hp-NearBest takes a
long time warming up and its results improve as triangulations get more complex.

5.3. Comparing hp-AFEM with other research

Now that we have a feeling of how our algorithm performs on the model problem, let us
compare its results with some other results found in literature.

5.3.1. Conditioning of global stiffness matrices

In Chapter 3, we spent a considerable amount of time inspecting properties of the element
matrices. Let us turn to the global view this time. Running hp-AFEM with default parameters
on the model problem, we record the global stiffness matrix at each step. We employ the
eigenvalue package Spectra [39] to estimate the smallest and largest eigenvalues of the matrices;
because our global stiffness matrix is symmetric, we have

κ2(A) :=
σmax

σmin
=
|λmax|
|λmin|

.

Figure 5.3.1 shows the 2-norm condition number of these matrices.

0 25 50 75 100 125 150 175 200
#DoF1/2

0

200

400

600

800

1000

2-
no

rm
 c

on
di

tio
n

nu
m

be
r

Figure 5.3.1.: Conditioning of the global stiffness matrices found when running hp-AFEM with
default parameters on the model problem.

This figure shows that these stiffness matrices are extremely well-conditioned, even for very
large systems. In [49], Xin et al. conduct numerical experiments for a range of problems. Each

98

experiment consists of uniform p-refinement of an initial triangulation, for the Lagrange- and
Aiffa bases. Xin et al. conclude that the Lagrange basis exhibits exponential growth in terms
of p h (# DoF)1/2, whereas the hierarchical Aiffa basis can show just linear growth. Our figure
clearly reflects this conclusion, and shows that it generalizes to our hp-adaptive strategy as
well.

5.3.2. Comparison with hp-REFINE

It is seen in practice [19, 35] that exponential decay for the model problem can be achieved
using a priori information of the solution. One such method (often called IDEAL in literature)
is driven by a Dörfler marking strategy, opting for h-refinement of a marked element when it
contains a singularity, and choosing p-enrichment for all other elements.

IDEAL is driven by a Dörfler marking; we arbitrarily chose θ = 0.8 (but lower values showed
very similar results). Our algorithm is invoked with default parameters.

Looking at Figure 5.3.2, we see that both methods exhibit exponential convergence, and
that their decay rates are virtually indiscernable. Our conclusion is that the triangulations
produced by hp-AFEM are not even near-best, but practically ideal as well.

5 10 15 20 25
#DoF1/3

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Es
tim

at
ed

 e
rro

r

hp-AFEM
IDEAL

Figure 5.3.2.: Error progressions of (black) hp-AFEM versus (red) IDEAL on the model problem.
The slope of a triangle correspond with that of the linear least-squares fit to the
data.

On the other hand, it would be entirely unreasonable to compare computation times: hp-
REFINE finishes in mere minutes, whereas hp-AFEM requires upwards of a day to complete. Of
course, for our method, no a priori information is necessary for the exponential decay, whereas
hp-REFINE explicitly requires knowing the singularities.

99

An example triangulation

For completeness, let us consider the triangulation D54 found at iteration 54 of IDEAL. It
carries # DoF(D54) = 4774 degrees of freedom, which is very close to that of the tipping point
triangulation DTP of Figure 5.2.3. Its error is

∥∥u− uD54

∥∥
H1

0 (Ω)
≈ 3.89× 10−6, with maximum

polynomial degree
∥∥pD54

∥∥
∞ = 8.

In Figure 5.2.3, we saw sharp p-enrichment on the elements directly adjacent to a corner. By
construction, D54 has h-refinement here, but apart from this behaviour, the triangulations are
very similar. We do see that the errors are distributed in a slightly more homogenous way; the
estimator quotient is 10.2 for this triangulation, whereas it was 41.9 for DTP (cf. Table 5.2.2).

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Polynomial degrees in triangulation zoom 102

zoom 104

zoom 106

2

3

4

5

6

7

8

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Polynomial degrees in triangulation zoom 101

zoom 102

2

3

4

5

6

7

8

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

10-log of estimated errors in triangulation zoom 102

zoom 104

zoom 106

7.4

7.2

7.0

6.8

6.6

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

10-log of estimated errors in triangulation zoom 101

zoom 102

7.4

7.2

7.0

6.8

6.6

Figure 5.3.3.: The triangulation D54 produced at iteration 54 of IDEAL, with marking param-
eter θ = 0.8 on the model problem. Left: the full triangulation. Middle: the
reentrant corner, for various zoom levels. Right: the top-right salient corner, for
various zoom levels.

100

5.3.3. Comparison with h-AFEM

We see from Figure 5.3.4 that the comparison of our novel algorithm with the well-established
h-AFEM are very much in our favour. We start both algorithms from the tipping point trian-
gulation DTP from Figure 5.2.1.

20 30 40 50 60 70 80
#DoF1/3

10 11

10 10

10 9

10 8

10 7

10 6

10 5

Es
tim

at
ed

 e
rro

r

0 10 20 30 40 50 60 70
Time (hours)

h-AFEM
hp-AFEM

Figure 5.3.4.: Error progressions of (red line) h-AFEM and (black line) hp-AFEM on the model
problem, starting from the tipping point triangulation in Figure 5.2.1.

The first call to Reduce inside hp-AFEM creates triangulations identical to those of h-AFEM,
explaining the overlap of the first few data points. We see that h-AFEM does not exhibit
exponential decay in terms of the number of degrees of freedom, leading to a clear distinction
between the two algorithms.

The computational cost of hp-NearBest leads to a head start of h-AFEM in the first 20-or-so
hours, albeit with much larger systems. The computer was able to perform 21 iterations of
h-AFEM before running out of memory. From this, we gather that the main advantage of the
current implementation of hp-AFEM over h-AFEM is the (smaller) size of the triangulations
it produces, and not (yet) the speed. We think that optimizing hp-NearBest (as described in
Remark 4.2.9) will help our case tremendously.

5.3.4. Comparison with hp-DECAY

Doleǰśı et al. [19, §6.1] conduct experiments with an hp-adaptive FEM in a setting similar to
ours, the main differences being that their method is based on a heuristic (and hence cannot be
proven to work optimally in every case) with discontinuous Galerkin (allowing hanging nodes
to appear in the triangulations) with the equilibrated fluxes error estimator (which is provably
reliable and efficient in a p-robust way, in contrast with our refinement error estimator).

Their problem consists of solving a Poisson problem on the L-shaped domain Ω, with pre-
scribed solution u(r, θ) := r2/3 sin(2θ/3), forcing function f = 0, and the induced inhomogenous
Dirichlet condition on ∂Ω.

101

A result by Brenner [12] shows that for our model problem, the solution u can be expressed
around the origin as

u(r, θ) = w(r, θ) + κ1φ(r)r2/3 sin(2θ/3) + κ2φ(r)r4/3 sin(4θ/3).

where: w is a smooth function vanishing in the origin; (r, θ) are polar coordinates around the
origin; φ is a smooth cut-off function, being one in a neighbourhood of 0 with support small
enough that u vanishes on ∂Ω; and κ1, κ2 are real numbers.

In other words, u is the sum of a smooth function w and some functions around the re-entrant
corner. Brenner then numerically finds estimates for the coefficients in [12, Tbl. 6]:

κ1 ≈ 0.4019, κ2 ≈ 0.

We conclude that, around the origin, our solution u satisfies

u ≈ w + 0.4019φ(r)r2/3 sin(2θ/3). (5.3.5)

Note the similarity between their solution and our observation in (5.3.5): If we assume that
hp-AFEM has little trouble approximating the smooth function w well (a sensible assumption),
and that the approximation error accumulates around the origin (a shaky assumption at best),
our errors should lie somewhere close to κ1 times theirs.

Quantitatively, a comparison of their error decay graph [19, Fig. 3] with ours yields the left of
Figure 5.3.6. Their results are supplemented with the IDEAL method—note that in their case,
the solution has only a single singularity so it will perform h-refinement in only the reentrant
corner.

12 14 16 18 20 22
#DoF1/3

10 7

10 6

10 5

10 4

10 3

Es
tim

at
ed

 e
rro

r i
n

en
er

gy
 n

or
m

hp-DECAY
IDEAL
hp-AFEM

Figure 5.3.6.: Left: Error progression of the hp-DECAY and IDEAL methods described in [19],
together with our own hp-AFEM. Right: The final triangulation of [19].

The figure reveals that our (estimated) errors are about two orders of magnitude (100 times)
smaller than those of hp-DECAY—much smaller than the predicted factor of κ1 ≈ 0.4019—but
also that this result should be taken with a grain of salt; even the errors of the IDEAL heuristic
are worse than ours. (On the other hand, one can see that the results of hp-DECAY are worse
than those of IDEAL, whereas in §5.3.2, we saw that on our model problem, error progression

102

of hp-AFEM was virtually the same as IDEAL.) As for the slope of the decay, we see that
hp-AFEM and hp-DECAY are similar.

Qualitatively, their final triangulation (depicted right) shows characteristics similar to our
triangulations—h-refinement towards the origin, with high degree elements in the center of the
domain and lower degree towards the re-entrant corner. There are also some clear differences:
Firstly, their solution has no intricacies in the salient corners of the domain, so there is hardly
any p- or h-refinement there. This is in stark contrast with our situation. Moreover, hp-AFEM
tends to do strong p-enrichment on the elements touching the corners, whereas neither the
IDEAL- nor the hp-DECAY-triangulation carry this property.

5.4. Varying the algorithm parameters

It must be noted that the near-best result of Theorem 2.4.5 remains valid, regardless of the
chosen parameter set. Therefore, the error progression of any valid choice of parameters is
very similar to the left graph of Figure 5.2.1, as we will now see. For computation time and
triangulation quality however, some parameter sets are more sensible than others.

5.4.1. Varying the Dörfler marking parameter

For instance, a high value of the Dörfler marking parameter θ ∈ (0, 1] results in very big
systems, choking the computer. Figure 5.4.1 shows the error progression of the Galerkin
solutions after each call to hp-NearBest, for a few chosen values of θ. The left graph tells
us that the choice of θ has very little effect on the (approximation error of the) near-best
triangulations that are found.

5 10 15 20 25 30
#DoF1/3

10 9

10 7

10 5

10 3

10 1

Es
tim

at
ed

 e
rro

r

0 10 20 30 40
Time (hours)

=0.1
=0.4
=0.6
=0.8
=1

Figure 5.4.1.: Error progression for the solutions found by hp-AFEM on the model problem,
for a few different values of θ.

The right shows us that θ = 1—corresponding with uniform h-refinement—results in very
long computation times and large systems; the computer ran out of memory after just 4
iterations. For other values, varying θ has little effect on computation time.

103

5.4.2. Varying the reduction and coarsening parameters

Varying the reduction parameter µ ∈ (0, 1) and the coarsening parameter ω ∈ (1,∞) have little
effect on the error progressions as well; see the left of Figure 5.4.2. We see that smaller µ results
in faster computation times; this is thanks to the smaller number of calls to hp-NearBest.

0 10 20 30
#DoF1/3

10 9

10 7

10 5

10 3

10 1

Es
tim

at
ed

 e
rro

r

0 20 40 60
Time (hours)

= 1
2 , = 4

= 1
4 , = 4

= 1
2 , = 8

= 1
2 , = 4

= 1
2 , = 2

Figure 5.4.2.: Error progression for the solutions found by hp-AFEM on the model problem,
for a few different values of µ and ω.

Of course, increasing the coarsening factor ω gives hp-NearBest more leeway to find a near-
best approximation, thus increasing the quality of the triangulations—but also the computation
time.

5.4.3. Quality of the triangulations under parameter changes

Let us try to quantify the strength of the different parameter sets by looking again their
performance with respect to a few quantities. For each model that reached the asymptotic
regime, we select the triangulation closest to the tipping point triangulationDTP of Figure 5.2.3.
The results are in Table 5.4.3, again divided into three segments.

The (estimated) errors and number of degrees of freedom are all very close to each other, so
we can make a good comparison. In fact, we see that most of the numbers are so close that
no specific value is worth mentioning; this again underlines the robustness of hp-AFEM.

The only true difference is seen in local indicators. We see that the parameters ω = 8, µ = 1
2

result in very homogenous spread of the error; the largest local errors (found in the salient
corners) are just 10.2 times as big as the smallest ones.

Conclusion

From the results in this chapter, we conclude that the hp-AFEM is excellent at finding near-best
triangulations that look beautiful. The error progressions produced by this algorithm show

104

Non-default parameter n/a θ = 0.6 µ = 0.25 ω = 8 µ =
√

0.5
hp-AFEM iter k = 15 k = 15 k = 8 k = 16 k = 29

DoF 3855 3929 3929 3783 3975∥∥∥u− uC(D∗k)

∥∥∥
H1

0 (Ω)
9.62e−6 9.53e−6 9.53e−6 9.65e−6 9.54e−6∥∥∥pD∗k∥∥∥∞ 12 12 12 12 12

max
{
η(D)

}
/min

{
η(D)

}
20.3 60.2 60.2 10.2 60.2

% time in NearBest 90% 84% 90% 87% 96%

#C(D∗k)/#D∗k 1.22 1.23 1.23 1.21 1.24
Broken error quotient 0.146 0.143 0.172 0.144 0.136
Comparability quotient 6 6 6 6 6
iters in Reduce 4 6 5 5 3

Table 5.4.3.: The quantities of Table 5.2.2 for a selection of similar triangulations produced by
hp-AFEM with different parameter values.

very clear exponential decay, and are very robust against changes in the parameters. Moreover,
the choice of basis ensures we have a well-conditioned stiffness matrix, which in turn allows
for high-accuracy solutions.

In terms of the quality of the found triangulations, the results are generally in our favour: On
the model problem, hp-AFEM exhibits exponential decay, much better than the algebraic decay
of h-AFEM. This error progression is indiscernable from the well-established heuristic IDEAL
(which produces “ideal” triangulations, but requires a priori information about the solution
and is therefore impractical). A direct comparison with the hp-adaptive heuristic hp-DECAY
of Doleǰśı proved hard, but did show promising results.

The main bottleneck of this algorithm remains its computation time. Requiring roughly 5
hours to find a scientific tolerance of 10−6 on our model problem, its practicality is limited in
realistic settings. However, the proposed solution looks promising.

105

Conclusion

In this thesis, we thoroughly investigated the novel algorithm hp-AFEM, both from a theoretical
and a more practical standpoint.

In Chapters 1 and 2, we developed a framework for the theoretical analysis of hp-adaptive
finite elements. We proved that the triangulations produced by hp-AFEM will, under mild con-
ditions, exhibit an exponential convergence rate in terms of the number of degrees of freedom.
This strongly improves over h-adaptive finite elements, where “only” algebraic decay can be
expected.

In Chapter 3, our heads turned towards finding a local basis from which a global basis for the
Galerkin space may be formed. We saw that the Lagrange basis usually chosen for h-adaptivity
is ill-suited for our needs, and saw why a hierarchical local basis—where the basis of degree
p + 1 is formed by adding functions to the basis of degree p—offers a beautiful solution. We
explored two examples of hierarchical bases, and the novel Bernstein-Beézier basis, and looked
at their strengths and weaknesses within finite element context.

In Chapter 4, we looked at details one must consider when implementing hp-AFEM. Chap-
ter 5 then discusses numerical experiments using this algorithm. We saw that it stacks very
favourably against existing methods, and that its theoretical near-best property actually trans-
lates to practically ideal triangulations.

Future work

There are many interesting directions to follow in future work. Firstly, the current situation
suffers from multiple theoretical problems—see the conclusion of Chapter 2. It is worthwhile
to see if we can, by considering a smaller class of boundary value problems, mitigate these
problems or maybe even solve them completely.

Practically, there are also a few details left unresolved. Firstly, these seems to be no unan-
imously optimal basis—see the conclusion of Chapter 3. In any case, the current hierarchical
basis does not allow for quick computation of the required matrices up to any degree; there-
fore, the implementation relies on precomputed matrices which is a serious deficit of this choice.
More investigation is needed to see if the Bernstein-Bézier basis is viable for our cause.

The implementation itself is far from perfect as well. In a subsequent version, one would likely
want to resolve the current bottleneck—computing the error functionals inside hp-NearBest.
We propose a solution in Remark 4.2.9. Moreover, it would benefit heavily from using some
form of unit testing to make sure each routine works in typical situations (and edge cases!)
The Google Test framework [29] has proven useful in the past. Better still, one should consider
rewriting the library as a module of, for instance, the DUNE project; cf [17]. This could
help robustness against errors, speed up development, and increase adoption within the finite
element community.

In any case, there is loads of work still to be done. It is a good thing I will be continuing
research as part of the NWO project New challenges in adaptivity under supervision of Rob
Stevenson, together with colleague and long-time friend Raymond van Venetië. Hopefully, the
many hours spent discussing this thesis with you will prove fruitful in the future.

106

Appendices

107

A. Near-best tree generation

Triangulations are the central point of this thesis. In Definition 1.5.5, we saw that given
some initial triangulation D0, there is an equivalence between triangulations D found from D0

through bisection, and (leaves of) subtrees T of a binary tree K with roots D ∈ D0. In this
appendix, we will look at those subtrees rather than the triangulations.

A.1. Error mapping

Definition A.1.1. Central to our approach will be an abstract error mapping

e : K× N→ R : D 7→ eD

that assigns an error to each possible hp-element D.
This error mapping is assumed to be decreasing under both h-refinement and p-enrichment

in that{
eD1 + eD2 ≤ eD KD1 ,KD2 the children of KD, and dD1 = dD2 = dD,

eD′ ≤ eD KD′ = KD, and dD′ ≥ dD.
(A.1.2)

♦

Definition A.1.3. On such an hp-triangulation D ∈ D, we define the global hp-error

ED :=
∑
D∈D

eD. ♦

Remark A.1.4. With the global hp-error, (A.1.2) is equivalent to

ED̃ ≤ ED (D̃ ≥ D). ♦

We can use this error mapping to formulate a notion of optimality among classes of subtrees
from Definition 1.5.5. We will start our discussion looking at the theory of h-subtree generation
by Binev et al.; cf. [10]. After a short introduction, we will present the main result of this
chapter: hp-subtree generation, again introduced by Binev; cf. [9].

A.2. Near-best h-subtree generation

Remark A.2.1. Every node of a subtree can be identified with an element in K. In this
paragraph, focusing on h-refinement only, we will identify an element D with its domain KD

and often write K instead. ♦

Assumption A.2.2. In this paragraph, we will assume K to have a single root; this corre-
sponds with the initial triangulation K0 having a single element, implying that Ω is necessarily
a triangle. We will mend this issue in the final section. ♦

In this h-adaptive case, the properties in (A.1.2) reduce to the subadditivity property:

eK ≥ eK1 + eK2 , (K ∈ K) (A.2.3)

108

when K1 and K2 are the children of K. The global h-error for a subtree T is then

EhT :=
∑

K∈L(T)

eK ,

where L(T) is the set of leaves of the subtree T .

Definition A.2.4. We can define the best N -term h-adaptive approximation error as

σhN := inf
{T subtree :#L(T)≤N}

EhT . (A.2.5)
♦

Remark A.2.6. In the quantity σhN , the infimum can be replaced by a minimum, because the
set over which the infimum is taken is finite. However, the cardinality of this set is equal to
the Nth Catalan number, which is known to grow like 4N/N3/2; trying every tree in this set
is intractable. ♦

Definition A.2.7. A sequence (TN)N of subtrees with #L(TN) = N is near-best when there
are 0 ≤ b ≤ 1 ≤ B independent of N such that

EhTN ≤ Bσ
h
bN (N ∈ N). ♦

We can derive an iterative algorithm for finding trees TN by greedily bisecting the leaf
with largest error. We saw in [47, App. C] that—by studying its behaviour on a sequence of
heaviside-like functions—this does not necessarily provide a near-best approximation.

It is remarkable, though, that we can alter this basic algorithm slightly and gain the near-
best property. We modify the errors as below, and and up with the following algorithm.

Definition A.2.8. Define the modified errors asẽK := eK when K is a root;
1
ẽK

:= 1
eK

+ 1
eK∗

when K∗ is the parent of K.
(A.2.9)

♦

Remark A.2.10. Let us look at the difference between e and ẽ in a little more detail. First,
we see that when eK∗ ≈ eK—no error reduction from parent to child—ẽK ≈ eK/2. When
eK � eK∗ , we see that ẽK ≈ eK .

Thus, the modified error penalizes the absence of error reduction by a factor of up to 1
2 . If this

persists, the modified error ẽK decays exponentially so the algorithm will refine elsewhere. ♦

Algorithm A.2.11 (Near-best subtree). Define T1 as the tree containing only the root. Receive
TN+1 from TN by subdividing a leaf K ∈ L(TN) with largest ẽ(K) among all leaves. ♦

Theorem A.2.12 ([9, Thm. 2.1]). Let the local errors eK satisfy (A.2.3), and build trees
TN by means of Algorithm A.2.11. Then the sequence (TN)N provides a near-best h-adaptive
approximation, in that

EhTN ≤
N

N − n+ 1
σhn (A.2.13)

for any n ≤ N .
Assuming that finding eK is an O(1) operation, the complexity for obtaining TN is O(N),

except for the sorting of {ẽK : K ∈ K} which requires O(N logN) operations.

109

Remark A.2.14. We can avoid sorting the local errors by binary binning : For each K, find
a κ ∈ Z such that 2κ ≤ ẽK < 2κ+1. Take any of the leaves from the nonempty bin with largest
κ. This will increase the constant in (A.2.13) by 2 but lowers the total complexity of the
algorithm to O(N). In applications however, the time spent computing the eK will outweigh
sorting a list by several orders of magnitude. ♦

Corollary A.2.15. Theorem A.2.12 tells us that with n = dN/2e, we have

EhTN =
N

bN/2c+ 1
σhdN/2e < 2σhdN/2e

so that the subtrees produced by Algorithm A.2.11 are, at worst, half as good as the best possible
subtree with half the number of leaves.

A.3. Near-best hp-subtree generation

The preceding paragraph showed that we can achieve near-best h-subtree approximation by
a simple greedy algorithm that runs in linear time. Unfortunately, the hp case is much more
involved.

First, let us recall the equivalence between h-triangulations created by newest vertex bi-
section from K0, and (the leaves of) h-subtrees. We can extend this equivalence to the
hp case by equipping all nodes K of such a subtree T with a natural number, so that{
D = (K, d) : K ∈ L(T), d ∈ N

}
becomes an hp-triangulation. This yields an hp-subtree, but

in the current context, the construction of a subordinate hp-subtree will prove fruitful.

•

•

•

• •

•

•

• •

•

•

• •

•

• •

•

•

•

•

• •

•

•

• •

• •

9

5

2

1 1

3

4

1 3

2 1

Figure A.3.1.: Left: An h-subtree T . Middle: an h-subtree T ′ ⊂ T . Right: the subordinate
hp-subtree P.

Definition A.3.2. See Figure A.3.1 for a visualization. Let KK be the infinite binary tree
rooted at K. Given an h-subtree T , any subtree T ′ ⊂ T can be converted to an hp-subtree

P(T ′, T) :=
{
D = (K, dK(T)) : K ∈ T ′

}
subordinate to T by defining its local complexities as

dK(T) := #L(KK ∩ T)
(
K ∈ T ′

)
.

Its total complexity then is defined as

#P :=
∑

D∈L(P)

dK = #L(T). ♦

110

We describe an algorithm that builds an h-subtree TN with N leaves, and examines all
possible hp-subtrees subordinate to TN to find the PN with minimal total error

PN := arg min
P⊂TN

EP , EP :=
∑

D∈L(P)

eD.

We will first describe finding this hp-subtree PN , and then growing the h-subtree TN .

Subtree

Definition A.3.3. The local hp-errors EK := EK(T) for nodes K of an h-subtree T are
defined in terms of the local error as

EK :=

eK,1 when K ∈ L(T);

min
{
EK1 + EK2 , eK,dK(T)

}
when K = K1 ∪K2.

This local hp-error encapsulates the competition between a piecewise approximation of lower
local complexity, and a “global” approximation of higher complexity. ♦

Algorithm A.3.4 (Subtree). To find PN from TN , we start from the leaves of TN and trim
the tree every time EK = eK,dK(TN), i.e., every time a global approximation is preferable over
a subdivision of the elements. ♦

Remark A.3.5. The dependency of EK(TN) on the h-subtree TN = {K} is only through the
number of leaves in the tree rooted at K, rather than the entire subtree TN . The value EK(TN)
will change only when KK ∩TN is enlarged due to an increase in N . Therefore, it is convenient
to define

EK,d :=

{
eK,1 when K ∈ L(T);

min
{
EK1 + EK2 , eK,d

}
when K = K1 ∪K2,

which coincides with EK(TN) on D = (K, d) ∈ PN whenever dK(TN) = d. ♦

Expand

Definition A.3.6. Analogous to the h-case (cf. (A.2.9)), we define the modified h-error ẽK
for triangles K asẽK := eK,1 when K is a root,

1
ẽK

:= 1
eK,1

+ 1
eK∗,1

when K∗ is the parent of K,
(K ∈ TN) . ♦

Definition A.3.7. To monitor local error behaviour on the inner nodes of the tree, we define
modified local hp-errors as ẼK,1 := ẽK ,

1
ẼK,d

:= 1
EK,d

+ 1
ẼK,d−1

when d > 1.

Large modified local hp-errors correspond with nodes that are “high-potential” for efficiently
driving the error down.

111

To locate the leaf of TN that will (hopefully) drive the hp-error down the most, we find, at
each node K ∈ TN , the quantity

q(K) :=

ẼK,1 when K ∈ L(TN),

min
{

max
{
q(K1), q(K2)

}
, ẼK,dK(TN)

}
when K = K1 ∪K2,

which defines the leaf of highest potential s(K) ∈ L(KK ∩ TN) through

s(K) :=

{
K when K ∈ L(TN),

s(arg max
{
q(K1), q(K2)

}
) when K = K1 ∪K2.

♦

The algorithm for incrementally growing TN is then as follows.

Algorithm A.3.8 (Expand). Define T1 as the tree containing only the domain root K0. For
each N , receive TN+1 from TN by subdividing the leaf s(K0). ♦

Near-best hp-subtree

Algorithm A.3.9 (Near-best hp-subtree). The full Near-best hp-subtree algorithm alternately
calls Expand and Subtree, after each iteration receiving an hp-subtree PN with complexity
#PN = N . For the self-contained description, see Algorithm A.3.10. A maximum number of
iterations Nmax can be specified. ♦

Definition A.3.11. In light of (A.2.5), we can define the best N -term hp-adaptive approxi-
mation error as

σhpN := inf
{P hp-subtree : #P≤N}

EP . ♦

Theorem A.3.12 ([9, Thm. 3.3]). The h-subtree TN and subordinate hp-subtree PN produced
by Algorithm A.3.9 provide near-best hp-approximation in the sense that

EPN ≤
2N − 1

N − n+ 1
σhpn

for any n ≤ N .
Assuming we can compute the local hp-errors eK,d in O(1) operations, the algorithm obtains

PN in

O

 ∑
D∈TN

dK(TN)

operations.

Corollary A.3.13. Substituting n = dN/2e in the near-best estimate of Theorem A.3.12 yields

EPN ≤
2N − 1

bN/2c+ 1
σhpdN/2e < 4σhpdN/2e;

the hp-subtrees produced by Algorithm A.3.9 are, at worst, a quarter as good as the best possible
hp-subtree with half the complexity.

112

1: procedure Near-best hp-subtree(Nmax ∈ N)
2: N := 1; T1 := {K0}; ẽK0

:= eK0,1; EK0,1 := eK0,1; ẼK0,1 := ẽK0 ;
3: q(K0) := ẼK,1, s(K0) := K0;
4: Subdivide s(K0) into K1,K2 yielding TN+1;
5: for both K := K1,K2 do
6: 1

ẽK
:= 1

eK,1
+ 1

ẽs(K0)
; EK,1 := eK,1; ẼK,1 := ẽK ;

7: q(K) := ẽK ; s(K) := K;

8: K := s(K0);
9: N := N + 1;

10: if N ≥ Nmax then
11: return.
12: dK(TN) := dK(TN−1) + 1; calculate eK,dK(TN);
13:

{
K1,K2

}
:= children of K;

14: EK,dK(TN) := min
{
EK1,dK1 (TN) + EK2,dK2 (TN), eK,dK(TN)

}
;

15: 1
ẼK,dK (TN)

:= 1
EK,dK (TN)

+ 1
ẼK,dK (TN)−1

;

16: X := arg max
{
q(K1), q(K2)

}
; q(K) := min

{
q(X), ẼK,dK(TN)

}
; s(K) := s(X);

17: if K = K0 then
18: goto line 4;
19: else
20: replace K with its parent;
21: goto line 12;

Algorithm A.3.10: The Near-best hp-subtree algorithm from [9, §3].

Corollary A.3.14. The complexity estimate in Theorem A.3.12 varies between O(N logN)
for well-balanced trees and O(N2) for highly skewed ones.

Remark A.3.15. The complexity estimate in Theorem A.3.12 assumes that we can compute
the local error functionals eK,d in O(1) time; this assumption is almost always violated, as one
solves a linear system of size h d to find this quantity. In fact, empirical results show that the
bulk of the computation time of the total hp-AFEM algorithm is spent finding the local error
functionals. ♦

A.4. Multiple roots

The algorithm as proposed by Binev works only for an initial triangulation with a single root
element. However, in applications, this is never the case.

Remark A.4.1. Our first attempt at extending the algorithm to the case of multiple roots
(cf. [47]) was acceptable at best: If the triangulation contains R roots, and we reduce the
global error functional to ε/R on each root through Algorithm A.3.9, then the total error must
be below ε. This however eliminates any adaptivity across roots; you can imagine that this is
suboptimal. ♦

Canuto et al. [15, Rem. 3.1] propose a solution to the multiple root problem. We unify
the R roots pairwise, at each step creating a combination root. We repeat this until a single

113

root remains; if this is not possible (because R is not a power of two; see Figure A.4.2) we
create up to dlog2Re − 1 virtual roots which contain an empty element domain. We denote
the augmented singly-rooted tree by K̂.

0

12

3

4

5

Figure A.4.2.: Combining elements to resolve the issue of multiple roots. Left: the original
domain and triangulation. Right: the augmented tree K̂.

We extend the definition of the approximation error eK,d as follows. For natural numbers
d, we had already defined eK,d; we define eK,0(v) :=‖v‖2H1(K) as the error of approximating v
with the zero function.

For virtual roots K, we define eK,d := 0 for any d ≥ 0. For combination roots K with
children K ′ and K ′′, we define eK,d := min{d′,d′′≥0:d′+d′′=d} eK′,d′ + eK′′,d′′ . It is mostly trivial
to show that this error functional conforms to the assumptions in (A.1.2). We will prove one
property here.

Proposition A.4.3. The extended error mapping eD to the multiple-root case is again de-
creasing under p-enrichment.

Proof. Let K = K1 ∪K2 be a combination root, and let d be given. With δ ∈ N0, we see that

eK,d+δ = min
{d′≥0,d′′≥0:d′+d′′=d+δ}

eK1,d′ + eK2,d′′

≤ min
{d′≥δ,d′′≥0:d′+d′′=d+δ}

eK1,d′ + eK2,d′′

= min
{d′−δ≥0,d′′≥0:d′−δ+d′′=d}

eK1,d′−δ + eK2,d′′

(δ′ := d′ − δ) = min
{δ′≥0,d′′≥0:δ′+d′′=d}

eK1,δ′ + eK2,d′′ = eK,d.

Remark A.4.4. It must be noted that with the introduction of these combination- and vir-
tual roots, we no longer have a one-to-one correspondence between leaves from subtrees and
triangulations. Any such root appearing as a leaf of a subtree found through Algorithm A.3.9
must be subdivided. This introduces extra degrees of freedom, but for large enough N—so
that the output subtree subdivides these roots organically—Theorem A.3.12 still holds. We
chose not to investigate too much. ♦

114

B. Local-to-global mapping

This algorithm is a more in-depth version of Algorithm 3.2.12.

1: N := 0; . # DoF seen until now
2: V := ∅; . Array of global DoFs, indexed by vertex
3: for all Dj ∈ D do . Runs over i = 1, . . .
4: r := 0; . Current local DoF
5: for all vertices v of Dj do
6: if v 6∈ V then
7: if v ∈ ∂Ω then
8: V [v] := ∅; . Vertex on domain boundary; no DoF
9: else

10: V [v] := N ; . Interior vertex; assign global DoF.
11: N = N + 1; . Increase #DoFs seen

12: iDj (r) := V [v]; r = r + 1;

13: if pDj < 2 then
14: continue; . Degree too low; no edge- or face DoFs

15: for k = 1, . . . , pD do
16: if k ≥ 3 then . Assign face DoFs
17: for r = 0, . . . , k − 3 do
18: iDj (r) := N ; r = r + 1; N = N + 1;

19: if k < pDj then
20: for all edges e of Dj do
21: if no neighbour across e then . Edge on ∂Ω; no DoF
22: iDj (r) := ∅; r = r + 1;
23: continue; . No global DoF; continue

24: Dk := neighbour of Dj across e;
25: if k ≥ pDk then . Neighbour complexity too low; no DoF
26: iDj (r) := ∅; r = r + 1;
27: continue; . No global DoF; continue

28: s := index of the local DoF on Dk along e corresponding with r;
29: if i < j then
30: iDj (r) := N ; iDk(s) := N ; . Assign both locals the same global
31: r = r + 1; N = N + 1;
32: else
33: iDj (r) := iDk(s); r = r + 1; . Copy the global DoF

Algorithm B.0.1: Construction of the local-to-global mapping.

115

C. Popular summary

Partial differential equations (PDEs) describe many processes in nature, from the flow of water
to the shape of a soap bubble. Often, it is hard (or even impossible) to find the function that
solves such a PDE. In such cases, one looks for numerical solutions that approximate the true
solution. In this thesis, we look at a finite element method : The domain of the function is
partitioned into a large number of elements—in our two-dimensional case, we will subdivide a
polygon into triangular elements. Endowing each triangle with a fixed polynomial degree, our
finite element method aids in finding an approximate solution to the PDE that is continuous
globally, and a polynomial on each triangle locally.

Given such an approximate solution, we often want to refine some of the triangles into
smaller ones, so that we may construct a better solution on this refined grid. Often, it is
natural to not refine every triangle, but only those on which the error (being the difference
of true and approximate solution) is large. This is called an h-adaptive finite element, for it
adaptively chooses which triangles to refine, thereby reducing their diameter h. Iterating such
an h-adaptive FEM allows finding a sequence of approximate solutions for which the size of
the global error can be shown to decay algebraically (like N−s for some s > 0, where N is the
total number of triangles).

In this thesis, we analyse a novel algorithm for an even more complex case—hp-adaptive finite
elements—where we allow increasing the polynomial degree on each triangle separately. We
will prove that, under mild circumstances, the size of the global error will decay exponentially
(like exp(−N τ) for some τ > 0) in the total number of degrees of freedom.

The algorithm works by alternating two routines—Reduce and NearBest. The former reduces
the error size through a few cycles of h-adaptive FEM, and the latter increases the efficiency
of the solution by throwing away near-redundant degrees of freedom, thereby sacrificing some
accuracy. See the left Figure: the red line corresponds with a call to NearBest, and the green
with a call to Reduce. The dotted green line shows the error progression of a pure h-adaptive
FEM, whereas the black line—found by connecting all points from a call to NearBest—shows
the possibly exponential convergence (corresponding with a straight line in a loglinear graph)
of our hp-adaptive method.

Our implementation makes heavy use of an hierarchical basis for the polynomial space on
each triangle, meaning that the basis for degree p+ 1 is found by adding some functions to the
one for degree p. This implementation produces beautiful triangulations; see the right Figure.

116

Bibliography

[1] Matplotlib: A 2D graphics environment, Computing In Science & Engineering 9 (2007),
no. 3, 90–95.

[2] S Adjerid, M Aiffa, and JE Flaherty, Hierarchical finite element bases for triangular
and tetrahedral elements, Computer Methods in Applied Mechanics and Engineering 190
(2001), no. 22, 2925–2941.

[3] Mark Ainsworth, Pyramid Algorithms for Bernstein-Bézier Finite Elements of High,
Nonuniform Order in Any Dimension, SIAM Journal on Scientific Computing 36 (2014),
no. 2, A543–A569.

[4] Mark Ainsworth, Gaelle Andriamaro, and Oleg Davydov, Bernstein–Bézier Finite Ele-
ments of Arbitrary Order and Optimal Assembly Procedures, SIAM Journal on Scientific
Computing 33 (2011), no. 6, 3087–3109.

[5] Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders
Logg, Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells, The
FEniCS Project Version 1.5, Archive of Numerical Software 3 (2015), no. 100.

[6] I. Babuška, M. Griebel, and J. Pitkäranta, The problem of selecting the shape functions
for a p-type finite element, International Journal for Numerical Methods in Engineering
28 (1989), no. 8, 1891–1908.

[7] Christian Bauer, Alexander Frink, and Richard year=2012 Kreckel, GiNaC is Not a CAS.

[8] Serge Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des prob-
abilités, Comm. Soc. Math. Kharkow 13 (1912), no. 1, 1–2.

[9] Peter Binev, Tree approximation for hp-adaptivity, IMI Preprint, University of South
Carolina (2014, to appear).

[10] Peter Binev, Wolfgang Dahmen, and Ron DeVore, Adaptive finite element methods with
convergence rates, Numerische Mathematik 97 (2004), no. 2, 219–268.

[11] D. Bræss, J. Schöberl, and V. Pillwein, Equilibrated residual error estimates are p-robust,
Computer Methods in Applied Mechanics and Engineering 198 (2009), no. 13, 1189–1197.

[12] Susanne C. Brenner, Multigrid Methods for the Computation of Singular Solutions and
Stress Intensity Factors I: Corner Singularies, Mathematics of Computation 68 (1999),
no. 226, 559–583.

[13] Susanne C Brenner and Ridgway Scott, The mathematical theory of finite element meth-
ods, vol. 15, Springer Science & Business Media, 2008.

[14] Claudio Canuto, Ricardo H. Nochetto, Rob Stevenson, and Marco Verani, On p-Robust
Saturation for hp-AFEM, (2016).

117

[15] , Convergence and optimality of hp-AFEM, Numerische Mathematik 135 (2017),
no. 4, 1073–1119.

[16] P.G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and
its Applications, Elsevier Science, 1978.

[17] Andreas Dedner, Robert Klöfkorn, Martin Nolte, and Mario Ohlberger, A generic in-
terface for parallel and adaptive discretization schemes: abstraction principles and the
dune-fem module, Computing 90 (2010), no. 3, 165–196.

[18] L. Demkowicz, Computing with hp-adaptive finite elements, Chapman & Hall/CRC, 2007.

[19] Vı́t Doleǰśı, Alexandre Ern, and Martin Vohraĺık, hp-Adaptation Driven by Polynomial-
Degree-Robust A Posteriori Error Estimates for Elliptic Problems, SIAM Journal on Sci-
entific Computing 38 (2016), no. 5, A3220–A3246.

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: ele-
ments of reusable object-oriented software, Pearson Education, 1995.

[21] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second or-
der, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, New York,
1983, Cataloging based on CIP information.

[22] P. Goetgheluck, Computing binomial coefficients, Am. Math. Monthly 94 (1987), no. 4,
360–365.

[23] Gaël Guennebaud, Benôıt Jacob, et al., Eigen v3, http://eigen.tuxfamily.org, 2010.

[24] , Eigen v3: Solving Sparse Linear Systems, https://eigen.tuxfamily.org/

dox-devel/group__TopicSparseSystems.html, 2010.

[25] W. Gui and I. Babuška, The h, p, and h-p versions of the finite element method in 1
dimension. II. The error analysis of the h- and h-p versions, Numerische Mathematik 49
(1986), no. 6, 613–657.

[26] , The h, p, and h-p versions of the finite element method in 1 dimension. III. The
adaptive h-p version, Numerische Mathematik 49 (1986), no. 6, 659–683.

[27] B. Guo and I. Babuška, The h-p version of the finite element method, Computational
Mechanics 1 (1986), no. 3, 203–220.

[28] Roland Hagen, Steffen Roch, and Bernd Silbermann, C∗-algebras and numerical analysis,
Marcel Dekker, 2001.

[29] Google Inc., Google Test: A C++ Testing Framework, https://github.com/google/

googletest.

[30] Robert C. Kirby, Low-Complexity Finite Element Algorithms for the de Rham Complex
on Simplices, SIAM Journal on Scientific Computing 36 (2014), no. 2, A846–A868.

[31] , Efficient discontinuous Galerkin finite element methods via Bernstein polynomi-
als, (2015).

118

http://eigen.tuxfamily.org
https://eigen.tuxfamily.org/dox-devel/group__TopicSparseSystems.html
https://eigen.tuxfamily.org/dox-devel/group__TopicSparseSystems.html
https://github.com/google/googletest
https://github.com/google/googletest

[32] M.J. Lai and L.L. Schumaker, Spline functions on triangulations, Encyclopedia of Math-
ematics an, no. v. 13, Cambridge University Press, 2007.

[33] Jens Markus Melenk and Barbara I Wohlmuth, On residual-based a posteriori error esti-
mation in hp-FEM, Advances in Computational Mathematics 15 (2001), no. 1-4, 311–331.

[34] William F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems,
ACM Transactions on Mathematical Software (TOMS) 15 (1989), no. 4, 326–347.

[35] , How High a Degree is High Enough for High Order Finite Elements?, Procedia
Computer Science 51 (2015), 246–255.

[36] Nicholas Nethercote and Julian Seward, Valgrind: A program supervision framework, In
Third Workshop on Runtime Verification (RV’03, 2003.

[37] R.H. Nochetto, K.G. Siebert, and A. Veeser, Theory of adaptive finite element methods: an
introduction, Multiscale, nonlinear and adaptive approximation, Springer, 2009, pp. 409–
542.

[38] Ricardo H. Nochetto and A. Veeser, Primer of adaptive finite element methods, Multiscale
and adaptivity: modeling, numerics and applications, Springer, 2011, pp. 125–225.

[39] Yixuan Qiu, Spectra: C++ Library For Large Scale Eigenvalue Problems, https://

spectralib.org, 2010.

[40] L. Ridgway Scott and S. Zhang, Finite element interpolation of nonsmooth functions
satisfying boundary conditions, Mathematics of Computation 54 (1990), no. 190, 483–
483.

[41] Richard Stallman et al., GDB: The GNU Project Debugger, https://www.gnu.org/

software/gdb/, 1986.

[42] Rob Stevenson, Some notes with adaptive Finite Elements, https://staff.fnwi.uva.
nl/r.p.stevenson/notes1.pdf.

[43] , Optimality of a standard adaptive finite element method, Foundations of Compu-
tational Mathematics 7 (2007), no. 2, 245–269.

[44] , The completion of locally refined simplicial partitions created by bisection, Math-
ematics of Computation 77 (2008), no. 261, 227–241.

[45] B.A. Szabó and I. Babuška, Finite element analysis, A Wiley-Interscience publication,
Wiley, 1991.

[46] Raymond van Venetië, Equilibrated flux estimator for the adaptive finite element method,
MSc Thesis, University of Amsterdam (2016).

[47] Jan Westerdiep, On h- and hp-type near-optimal tree generation and piecewise polynomial
approximation in 1 and 2 dimensions, BSc Thesis, University of Amsterdam (2014).

[48] Steven Wolfram, Wolfram Mathematica, http://www.wolfram.com/mathematica/.

[49] J. Xin, K. Pinchedez, and J.E. Flaherty, Implementation of hierarchical bases in FEMLAB
for simplicial elements, ACM Trans. on Math. Soft. 31 (2005), no. 2, 187–200.

119

https://spectralib.org
https://spectralib.org
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://staff.fnwi.uva.nl/r.p.stevenson/notes1.pdf
https://staff.fnwi.uva.nl/r.p.stevenson/notes1.pdf
http://www.wolfram.com/mathematica/

	Introduction
	Theoretical foundation and h-adaptivity
	Variational problems
	Finite elements
	A priori error estimation
	A posteriori error estimation
	Grid refinement
	h-AFEM

	Theory of hp-adaptivity
	A framework for hp-adaptivity
	Near-best approximations
	The routine Reduce
	hp-AFEM

	Bases for the finite element space
	Lagrange elements
	Hierarchical elements
	Local bases
	Examples of hierarchical elements
	Bernstein-Bézier elements

	Practical considerations
	Computing the necessary quantities
	The error functional
	Interelement continuity
	Implementation

	Numerical results
	Known solution
	L-shaped domain and first run of hp-AFEM
	Comparing hp-AFEM with other research
	Varying the algorithm parameters

	Conclusion
	Appendix Near-best tree generation
	Appendix Local-to-global mapping
	Appendix Popular summary
	Bibliography

